Skip to main content
Log in

A novel dual-flux immunochromatographic test strip based on luminescence resonance energy transfer for simultaneous detection of ochratoxin A and deoxynivalenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mycotoxins are secondary metabolites of fungi, which seriously threaten human health. Among them, ochratoxin A (OTA) and deoxynivalenol (DON) have become the main factors that pollute cereals and by-products. In order to achieve simultaneous detection of OTA and DON quantitatively, a novel dual-flux immunochromatographic assay (dICA) was established. The dual-flux assay is based on upconversion nanoparticles (UCNPs) as fluorescence tags to label antigens and gold nanoparticles (AuNPs) as fluorescence quencher to label monoclonal antibodies (mAbs). The intensity of the green fluorescence (540 nm) of UCNPs can be used as an analytical signal, indicating the formation of antigen–antibody immune complexes, thereby indicating the presence or absence of the target analyte. The intensity of the red fluorescence (660 nm) of UCNPs is not affected and can be used as a quality control signal, and the dual-flux bidirectional single-line labeling mode allows for the simultaneous detection of two different mycotoxins on two test lines. This work indicated that the developed dICA provided a sensitive, rapid, and reliable on-site simultaneous detection of multiple mycotoxins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA (2015) Analytical methods for determination of mycotoxins: an update (2009–2014). Anal Chim Acta 901:12–33. https://doi.org/10.1016/j.aca.2015.10.013

    Article  CAS  Google Scholar 

  2. Alhamoud Y, Yang DT, Kenston SSF, Liu GZ, Liu LY, Zhou HB, Ahmed F, Zhao JS (2019) Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 141:111418. https://doi.org/10.1016/j.bios.2019.111418

  3. Kholova A, Lhotska I, Uhrova A, Spanik I, Machynakova A, Solich P, Svec F, Satinsky D (2020) Determination of Ochratoxin A and Ochratoxin B in Archived Tokaj Wines (Vintage 1959-2017) Using On-Line Solid Phase Extraction Coupled to Liquid Chromatography. Toxins 12(12):739. https://doi.org/10.3390/toxins12120739

  4. Tian FY, Zho J, Jiao BN, He Y (2019) A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. Nanoscale 11:9547–9555. https://doi.org/10.1039/c9nr02872b

    Article  CAS  Google Scholar 

  5. Zhou B, Yuan XY, Hu YH, Fan J, Yang WG, Guo MM, Zhang Y, Li WX, Zhang J (2019) Detection of deoxynivalenol (DON) using europium chelates and magnetic nanoparticles. Food Agr Immunol 30:87–94. https://doi.org/10.1080/09540105.2018.1548577

    Article  CAS  Google Scholar 

  6. Wei T, Ren PP, Huang LL, Ouyang ZC, Wang ZY, Kong XF, Li TJ, Yin YL, Wu YN, He QH (2019) Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 300(1):125176. https://doi.org/10.1016/j.foodchem.2019.125176

  7. Gu C. X, Yang LY, Wang MH, Zhou N, He LH, Zhang ZH, Du M (2019) A bimetallic (Cu-Co) Prussian Blue analogue loaded with gold nanoparticles for impedimetric aptasensing of ochratoxin a. Microchim Acta 186:343. https://doi.org/10.1007/s00604-019-3479-5

  8. Kong DZ, Wu XL, Li Y, Liu LQ, Song SS, Zheng QK, Kuang H, Xu CL (2019) Ultrasensitive and eco-friendly immunoassays based monoclonal antibody for detection of deoxynivalenol in cereal and feed samples. Food Chem 270:130–137. https://doi.org/10.1016/j.foodchem.2018.07.075

    Article  CAS  Google Scholar 

  9. Zhan SN, Hu JQ, Li Y, Huang XL, Xiong YH (2021) Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B-1 in corn samples. Food Chem 342(16):128327. https://doi.org/10.1016/j.foodchem.2020.128327

  10. Yan JX, Shi Q, You KH, Li YP, He QH (2019) Phage displayed mimotope peptide-based immunosensor for green and ultrasensitive detection of mycotoxin deoxynivalenol. J Pharm Biomed 168:94–101. https://doi.org/10.1016/j.jpba.2019.01.051

    Article  CAS  Google Scholar 

  11. Huang X, Huang XY, Xie JH, Li XJ, Huang ZB (2020) Rapid simultaneous detection of fumonisin B-1 and deoxynivalenol in grain by immunochromatographic test strip. Anal Biochem 606(1):113878. https://doi.org/10.1016/j.ab.2020.113878

  12. Wu S J, Wang, F, Li Q, Wang J, Zhou Y, Duan N, Niazi S, Wang ZP (2020) Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chem 323(1):126823. https://doi.org/10.1016/j.foodchem.2020.126823

  13. Li XM, Wang J, Yi CQ, Jiang LL, Wu JX, Chen XM, Shen X, Sun YM, Lei HT (2019) A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. Sensor Actuat B-Chem 290:170–179. https://doi.org/10.1016/j.snb.2019.03.108

    Article  CAS  Google Scholar 

  14. Xu Y, Ma B, Chen EJ, Yu XP, Ye ZH, Sun CX, Zhang MZ (2021) Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food Chem 336(30):127713. https://doi.org/10.1016/j.foodchem.2020.127713

  15. Wang LZ, Sun JD, Ye J, Wang LP, Sun XL (2022) One-step extraction and simultaneous quantitative fluorescence immunochromatography strip for AFB(1) and Cd detection in grain. Food Chem 374(16):131684. https://doi.org/10.1016/j.foodchem.2021.131684

  16. Beloglazova N, Lenain P, Tessier M, Goryacheva I, Hens Z, De Saeger S (2019) Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone. Talanta 192:169–174. https://doi.org/10.1016/j.talanta.2018.09.042

    Article  CAS  Google Scholar 

  17. Hou SL, Ma JJ, Cheng YQ, Wang HG, Sun JH, Yan YX (2020) Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B-1, deoxyonivalenol, and zearalenone in grains. Food Control 117:107331. https://doi.org/10.1016/j.foodcont.2020.107331

  18. Duan H, Li Y, Shao YN, Huang XL, Xiong YH (2019) Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensor Actuat B-Chem 291:411–417. https://doi.org/10.1016/j.snb.2019.04.101

    Article  CAS  Google Scholar 

  19. Wu YH, Zhou, YF, Huang H, Chen XR, Leng YK, Lai WH, Huang XL, Xiong YH (2020) Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sensors Actuators B Chem 316(1):128107. https://doi.org/10.1016/j.snb.2020.128107

  20. Huang XY, Huang T, Li XJ, Huang ZB (2020) Flower-like gold nanoparticles-based immunochromatographic test strip for rapid simultaneous detection of fumonisin B-1 and deoxynivalenol in Chinese traditional medicine. J Pharm Biomed 177(5):112895. https://doi.org/10.1016/j.jpba.2019.112895

  21. Mei Q, Bansal A, Jayakumar MKG, Zhang Z, Zhang J, Huang H, Yu D, Ramachandra CJA, Hausenloy DJ, Soong TW, Zhang Y (2019) Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nat Commun 10:4416. https://doi.org/10.1038/s41467-019-12374-4

    Article  CAS  Google Scholar 

  22. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11:835–840. https://doi.org/10.1021/nl1041929

    Article  CAS  Google Scholar 

  23. Liang J, He C, Xiong X, Zhang X, Wu C (2005) Influence of pH on preparation of colloidal gold. Chin J Rare Metals 29:468–470

    CAS  Google Scholar 

  24. Guo X, Yuan Y, Liu J, Fu S, Zhang J, Mei Q, Zhang Y (2021) Single-line flow assay platform based on orthogonal emissive upconversion nanoparticles. Anal Chem 93:3010–3017. https://doi.org/10.1021/acs.analchem.0c05061

    Article  CAS  Google Scholar 

  25. Goryacheva OA, Beloglazova NV, Goryacheva IY, De Saeger S (2021) Homogenous FRET-based fluorescent immunoassay for deoxynivalenol detection by controlling the distance of donor-acceptor couple. Talanta 225(1):1211973. https://doi.org/10.1016/j.talanta.2020.121973

  26. He Y, Tian FY, Zhou J, Zhao QY, Fu RJ, Jiao BN (2020) Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. J Hazard 388(15):121758. https://doi.org/10.1016/j.jhazmat.2019.121758

  27. Boonkaew S, Yakoh A, Chuaypen N, Tangkijvanich P, Rengpipat S, Siangproh W, Chailapakul O (2021) An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. Biosens Bioelectron 193(1):113543. https://doi.org/10.1016/j.bios.2021.113543

  28. Fang CC, Chou CC, Yang YQ, Wei-Kai T, Wang YT, Chan YH (2018) Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal Chem 90:2134–2140. https://doi.org/10.1021/acs.analchem.7b04411

    Article  CAS  Google Scholar 

  29. Eskola M, Altieri A, Galobart J (2018) Overview of the activities of the European Food Safety Authority on mycotoxins in food and feed. World Mycotoxin J 11:277–289. https://doi.org/10.3920/WMJ2017.2270

    Article  Google Scholar 

  30. Yan JX, Hu WJ, You KH, Ma ZE, Xu Y, Li YP, He QH (2020) Biosynthetic mycotoxin conjugate mimetics-mediated green strategy for multiplex mycotoxin immunochromatographic assay. J Agric Food Chem 68:2193–2200. https://doi.org/10.1021/acs.jafc.9b06383

    Article  CAS  Google Scholar 

  31. Zhou B, Yuan X, Hu Y, Fan J, Yang W, Guo M, Zhang Y, Li W, Zhang J (2019) Detection of deoxynivalenol (DON) using europium chelates and magnetic nanoparticles. Food Agric Immunol 30:87–94. https://doi.org/10.1080/09540105.2018.1548577

    Article  CAS  Google Scholar 

  32. Costantini F, Sberna C, Petrucci G, Reverberi M, Domenici F, Fanelli C, Manetti C, de Cesare G, DeRosa M, Nascetti A, Caputo D (2016) Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sens Actuators B Chem 230:31–39. https://doi.org/10.1016/j.snb.2016.02.03

    Article  CAS  Google Scholar 

  33. Xu Y, He Z, He Q, Qiu Y, Chen B, Chen J, Liu X (2014) Use of cloneable peptide-MBP fusion protein as a mimetic coating antigen in the standardized immunoassay for mycotoxin ochratoxin A. J Agric Food Chem 62(35):8830–8836. https://doi.org/10.1021/jf5028922

    Article  CAS  Google Scholar 

  34. Zhou S, Xu L, Kuang H, Xiao J, Xu C (2021) Fluorescent microsphere immunochromatographic sensor for ultrasensitive monitoring deoxynivalenol in agricultural products. Microchemical Journal 164:106024. https://doi.org/10.1016/j.microc.2021.106024

  35. Lu L, Seenivasan R, Wang Y-C, Yu J-H, Gunasekaran S (2016) An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim Acta 213:89–97. https://doi.org/10.1016/j.electacta.2016.07.096

    Article  CAS  Google Scholar 

  36. Rodriguez RS, Szlag VM, Reineke TM, Haynes CL (2020) Multiplex surface-enhanced Raman scattering detection of deoxynivalenol and ochratoxin A with a linear polymer affinity agent. Mater Adv 1(9):3256–3266. https://doi.org/10.1039/d0ma00608d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 81971740), Natural Science Foundation of Shanghai (No. 21ZR1423200), Health effect of municipal tap water based on direct drinking target (19DZ1204404), and Innovative Research Team of High Level Local Universities in Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Pan or Jinliang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3516 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Cao, J., Wang, X. et al. A novel dual-flux immunochromatographic test strip based on luminescence resonance energy transfer for simultaneous detection of ochratoxin A and deoxynivalenol. Microchim Acta 189, 466 (2022). https://doi.org/10.1007/s00604-022-05561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05561-6

Keywords

Navigation