Skip to main content
Log in

Core-satellite nanostructures and their biomedical applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Plasmonic core-satellite nanostructures assembled from simple building blocks have attracted extensive attention since they were reported by the way of DNA-directed assembly in 1998, because of their unique enhanced and synergistic optical properties and widespread potential applications in biosensing, imaging, drug delivery, and diagnostics. In this review, we introduce the synthetic methods of core-satellite nanostructures, emphazising the bottom-up synthesis method, including DNA, molecular, protein, peptide, amino acids, metal ion–assisted assembly, electrostatic adsorption assembly, clicked-to-assembly, and in situ deposition. Than we review and discuss their morphology classification, and summarize influencing factors of morphology. This is followed by overviews on optical properties, including localized surface plasmon resonance, surface-enhanced Raman scattering, surface-enhanced fluorescence and quenching, and applications in the biomedical field. Finally, the challenges and prospects of these kinds of nanostructures are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2014 American Chemical Society. b Reproduced with permission from [3].Copyright 2017 Optical Society of America. c Reproduced with permission from [11]. Copyright 2012 Royal Society of Chemistry. d Reproduced with permission from [12]. Copyright 2020 Elsevier B.V. e Reproduced with permission from[13]. Copyright 2013 American Chemical Society. f Reproduced with permission from [13]. Copyright 2017 American Chemical Society. g Reproduced with permission from [14].Copyright 2016 John Wiley & Sons, Ltd. h Reproduced with permission from [15]. Copyright 2015 American Chemical Society. i Reproduced with permission from [16]. Copyright 2020 American Chemical Society. j Reproduced with permission from [17]. Copyright 2013 American Chemical Society. k Reproduced with permission from [18].Copyright 2020 Wiley–VCH GmbH. l Reproduced with permission from [19]. Copyright 2015 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Copyright 2011 American Chemical Society

Fig. 4

Copyright 2012 American Chemical Society

Fig. 5

Copyright 2013 American Chemical Society. B Synthesizing core-satellite clusters by using p-ATP molecular linker at different pH conditions and TEM images. Reproduced with permission from [28]. Copyright 2012 American Chemical Society. C Schematic of the assembly process and SEM images in each step for ultrahigh-purity core-satellite nanostructures using selective desorption. Reproduced with permission from [33]. Copyright 2012 American Chemical Society. D Schematic of employing VUV light to fabricate high-purity core-satellite nanostructure process and corresponding SEM images. Reproduced with permission from [30]. Copyright 2016 American Chemical Society

Fig. 6

Copyright 2020 John Wiley and Sons

Fig. 7

Copyright 2012 American Chemical Society

Fig. 8
Fig. 9

Copyright 2018 American Chemical Society. B Schematic of selective growth of silver satellites on the tips of vertically oriented Au NR arrays in the presence of thiol ligands, and SEM image of target nanostructures in the presence of β-mercaptoethylamine (MEA) as the blocking ligand. Reproduced with permission from [64]. Copyright 2020 American Chemical Society. C Illustrative description of the synthesis process of the Au NSs@mSiO2@Ag NPs, and corresponding SEM images in each step. Reproduced with permission from [65]. Copyright the Royal Society of Chemistry 2012

Fig. 10

Copyright 2012 American Chemical Society. B TEM images of rod core-satellite nanostructures obtained at different reaction times. Reproduced with permission from [4]. Copyright the Royal Society of Chemistry 2015. C TEM, SEM, and energy-dispersive X-ray (EDX) images of nanostructures obtained with different reaction times for silver satellites synthesis. Reproduced with permission from [65]. Copyright the Royal Society of Chemistry 2012. D Schematics and corresponding TEM images of nanoassemblies obtained with different surface compounds: (a) linear PAH (b) branched PEI. Reproduced with permission from[55]. E The architecture diagrams and the corresponding TEM images of nanoclusters under different pH conditions. Reproduced with permission from [73]. Copyright 2018 American Chemical Society. F TEM images of nanostructures for different core-satellite ratio: (a) 1:3, (b) 1:6, (c) 1:9, (d) 1:12, and (e) 1:18. Reproduced with permission from [28]. Copyright 2012 American Chemical Society. G TEM images of nanostructures with different sizes of satellites obtained respectively by adding amounts of 10 mM AgNO3: (a) 75, (b) 225, and (c) 350 μL. Reproduced with permission from[63]. Copyright 2018 American Chemical Society

Fig. 11

Copyright 2016 American Chemical Society. B Extinction spectra of the core-satellite nanostructures with linkers of different lengths from 1,2-ethanedithiol (C2) to 1,16-hexadecanedithiol (C16) (a), and exponential fit plot of surface plasmon coupling wavelengths and core-to-satellite gap distances (b). Reproduced with permission from [33]. Copyright 2012 American Chemical Society. C UV–vis spectra of cores, satellites, and core-satellite nanostructures with different satellite-core ratios, and inset reveals a gradual red shift of LSPR wavelength with the increase of the average number of satellites per core (a). Linear fit plot of LSPR wavelength and satellite-core ratio (b). Reproduced with permission from [28]. Copyright 2012 American Chemical Society

Fig. 12

Copyright the Royal Society of Chemistry 2015. B Sandwich immunoassay of AFP by antibody-4-MBA-labeled core–shell-satellite nanostructure (a) and TEM image of this nanostructure (b), SERS spectra, and standard curve of AFP detection (c). Reproduced with permission from [67]. Copyright 2019 American Chemical Society. C Schematic diagram OTA detection based on chiral-aptasensor (a), TEM images of gradual disassembly of nanostructures assemblies with increasing concentration of OTA (b), CD spectra and standard curve of diverse concentrations OTA. Reproduced with permission from [136]. Copyright 2014 Elsevier B.V. D Colorimetric detection scheme of nanoassemblies cleaved by proteolytic (a). Dark-field microscopy images of colorimetric transformation were obtained at 0, 30, and 60 min after 100-μM trypsin was added to cleave peptide tether, and bright-field illumination images of nanoassembled in the substrate before and after proteolytic cleavage by trypsin (b). Normalized spectra corresponding to the images of three dark-field microscopies (c). Reproduced with permission from [48]. Copyright 2011 American Chemical Society. E Schematic of SERS (a) and fluorescence quenching-based (c) sensing for detection of CEA, as well as SERS spectra of different CEA concentrations and the linear fitting plot of SERS intensities and the logarithm of CEA concentrations (b), fluorescence intensity spectra of CEA quenched by different nanostructures and calibration curve of 4-MBA-tagged HPGNPs@mSiO2-Ring quenching efficiency for different CEA concentrations (d). Reproduced with permission from[12]. Copyright 2020 Elsevier B.V

Fig. 13

Copyright 2016 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. B Upconversion fluorescence-SERS probes used for dual-modal imaging mode (a). SERS spectra of blank skin and probes injected site under 785-nm excitation and fluorescence image of Kunming rat with the 980-nm irradiation (b). Reproduced with permission from [10]. Copyright 2014 American Chemical Society. C Scheme of AuNR-Pt@Ag2S core-satellite nanostructures used for quantitative detection of miRNA-21 and multimodal bioimaging guided PTT, including fluorescence, PA and CT imaging (a). A series of confocal images of Hela cells adding different concentrations of miR-21, and plot of the relationship between fluorescence intensity and miR-21 concentrations (b). Ag2S, CT, and PA images of tumor-bearing mice obtained at different times after intravenous injection with nanostructures(c). Reproduced with permission from [149]. Copyright 2017 John Wiley and Sons

Fig. 14

Copyright 2017 John Wiley and Sons. B The assembly routine and action process of multimode diagnostic probe (a). UCL, CT, PA, and T1-MR imaging in vivo, respectively (b). Tumor volume change curve and dissection photographs of tumors after treatments (c). Reproduced with permission from [19]. Copyright 2015 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. C Schematic illustration of Dox-Loaded core-satellite nanostructures disassembled by miRNA-21 for selective drug release and “turn-on” apoptosis imaging (a). Confocal images show the fluorescence intensity of HepG2 cells cultured with a series of different nanoprobes (b). Histogram shows caspase-3 concentrations produced by cells incubated with different nanoprobes (c). Reproduced with permission from [154]. Copyright 2021 American Chemical Society. D Manganese ferrite nanoparticle anchored mesoporous silica nanoparticles (MFMSNs) for PDT therapy in hypoxic tumor (a). T2*-weighted MR images of tumors that are circled with red lines were obtained at various time points after injection with agents (b). Tumor growth curve within 3 weeks after treatments with various materials and corresponding final tumor images (c). Reproduced with permission from [155]. Copyright 2017 American Chemical Society

Similar content being viewed by others

References

  1. Ha M, Kim JH, You M, Li Q, Fan C, Nam JM (2019) Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev 119:12208–12278. https://doi.org/10.1021/acs.chemrev.9b00234

    Article  CAS  Google Scholar 

  2. Holler RP, Dulle M, Thoma S, Mayer M, Steiner AM, Forster S, Fery A, Kuttner C, Chanana M (2016) Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: correlation of structure and optical properties. ACS Nano 10:5740–5750. https://doi.org/10.1021/acsnano.5b07533

    Article  CAS  Google Scholar 

  3. Chang YC, Huang LC, Chuang SY, Sun WL, Lin TH, Chen SY (2017) Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags. Opt Express 25:24767–24779. https://doi.org/10.1364/OE.25.024767

    Article  CAS  Google Scholar 

  4. Feng J, Wu X, Ma W, Kuang H, Xu L, Xu C (2015) A SERS active bimetallic core-satellite nanostructure for the ultrasensitive detection of Mucin-1. Chem Commun 51:14761–14763. https://doi.org/10.1039/c5cc05255f

    Article  CAS  Google Scholar 

  5. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675. https://doi.org/10.1021/ja982721s

    Article  CAS  Google Scholar 

  6. Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5:2042–2050. https://doi.org/10.1021/nn103172t

    Article  CAS  Google Scholar 

  7. Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12:1660–1667. https://doi.org/10.1021/nl3000453

    Article  CAS  Google Scholar 

  8. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189. https://doi.org/10.1021/nl102108u

    Article  CAS  Google Scholar 

  9. Lv J-T, Yan Y, Zhang W-K, Liu Y-H, Jiang Z-Y, Si G-Y (2015) Plasmonic nanoantennae fabricated by focused Ion beam milling. Int J Precis Eng Man 16:851–855. https://doi.org/10.1007/s12541-015-0112-3

    Article  Google Scholar 

  10. Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L (2014) Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl Mater Inter 6:5152–5160. https://doi.org/10.1021/am500411m

    Article  CAS  Google Scholar 

  11. Chiang CS, Kao YC, Webster TJ, Shyu WC, Cheng HW, Liu TY, Chen SY (2020) Circulating tumor-cell-targeting Au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores. J Mater Chem B 8:5460–5471. https://doi.org/10.1039/d0tb00501k

    Article  CAS  Google Scholar 

  12. Yang Y, Zhu J, Weng GJ, Li JJ, Zhao JW (2021) Gold nanoring core-shell satellites with abundant built-in hotspots and great analyte penetration: An immunoassay platform for the SERS/ fluorescence-based detection of carcinoembryonic antigen. Chem Eng J 409:128173. https://doi.org/10.1016/j.cej.2020.128173

    Article  CAS  Google Scholar 

  13. Li X, Xing L, Zheng K, Wei P, Du L, Shen M, Shi X (2017) Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl Mater Inter 9:5817–5827. https://doi.org/10.1021/acsami.6b15185

    Article  CAS  Google Scholar 

  14. Huang Z, Meng G, Huang Q, Chen B, Lu Y, Wang Z, Zhu X, Sun K (2017) Surface-enhanced Raman scattering from plasmonic Ag-nanocube@Au-nanospheres core@satellites. J Raman Spectrosc 48:217–223. https://doi.org/10.1002/jrs.5032

    Article  CAS  Google Scholar 

  15. Shiohara A, Novikov SM, Solís DM, Taboada JM, Obelleiro F, Liz-Marzán LM (2014) Plasmon Modes and Hot Spots in Gold Nanostar-Satellite Clusters. J Phys Chem C 119:10836–10843. https://doi.org/10.1021/jp509953f

    Article  CAS  Google Scholar 

  16. Höller RPM, Kuttner C, Mayer M, Wang R, Dulle M, Contreras-Cáceres R, Fery A, Liz-Marzán LM (2020) Colloidal superstructures with triangular cores: size effects on SERS efficiency. ACS Photonics 7:1839–1848. https://doi.org/10.1021/acsphotonics.0c00642

    Article  CAS  Google Scholar 

  17. Xu L, Hao C, Yin H, Liu L, Ma W, Wang L, Kuang H, Xu C (2013) Plasmonic core-satellites nanostructures with high chirality and bioproperty J. Phys Chem Lett 4:2379–2384. https://doi.org/10.1021/jz401014b

    Article  CAS  Google Scholar 

  18. Li N, Shen F, Cai Z, Pan W, Yin Y, Deng X, Zhang X, Machuki JO, Yu Y, Yang D, Yang Y, Guan M, Gao F (2020) Target-induced core-satellite nanostructure assembly strategy for dual-signal-on fluorescence imaging and Raman quantification of intracellular MicroRNA guided photothermal therapy. Small 16:e2005511. https://doi.org/10.1002/smll.202005511

    Article  CAS  Google Scholar 

  19. Sun M, Xu L, Ma W, Wu X, Kuang H, Wang L, Xu C (2016) Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Adv Mater 28:898–904. https://doi.org/10.1002/adma.201505023

    Article  CAS  Google Scholar 

  20. Lermusiaux L, Nisar A, Funston AM (2020) Flexible synthesis of high-purity plasmonic assemblies. Nano Res 14:635–645. https://doi.org/10.1007/s12274-020-3084-2

    Article  CAS  Google Scholar 

  21. Seiichi O, Dylan G, Warren CWC (2016) DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351:841–845. https://doi.org/10.1126/science.aad4925

    Article  CAS  Google Scholar 

  22. Xu L, Kuang H, Xu C, Ma W, Wang L, Kotov NA (2012) Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J Am Chem Soc 134:1699–1709. https://doi.org/10.1021/ja2088713

    Article  CAS  Google Scholar 

  23. Zhao X, Li S, Xu L, Ma W, Wu X, Kuang H, Wang L, Xu C (2015) Up-conversion fluorescence “off-on” switch based on heterogeneous core-satellite assembly for thrombin detection. Biosens Bioelectron 70:372–375. https://doi.org/10.1016/j.bios.2015.03.068

    Article  CAS  Google Scholar 

  24. Zheng Y, Thai T, Reineck P, Qiu L, Guo Y, Bach U (2013) DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor. Adv Funct Mater 23:1519–1526. https://doi.org/10.1002/adfm.201202073

    Article  CAS  Google Scholar 

  25. Qian GS, Kang B, Zhang ZL, Li XL, Zhao W, Xu JJ, Chen HY (2016) Plasmonic nanohalo optical probes for highly sensitive imaging of survivin mRNA in living cells. Chem Commun 52:11052–11055. https://doi.org/10.1039/c6cc02831d

    Article  CAS  Google Scholar 

  26. Chan MS, Landig R, Choi J, Zhou H, Liao X, Lukin MD, Park H, Lo PK (2019) Stepwise ligand-induced self-assembly for facile fabrication of nanodiamond-gold nanoparticle dimers via noncovalent biotin-streptavidin interactions. Nano Lett 19:2020–2026. https://doi.org/10.1021/acs.nanolett.9b00113

    Article  CAS  Google Scholar 

  27. Li LL, Lu Y (2015) Regiospecific hetero-assembly of DNA-functionalized plasmonic upconversion superstructures. J Am Chem Soc 137:5272–5275. https://doi.org/10.1021/jacs.5b01092

    Article  CAS  Google Scholar 

  28. Gandra N, Abbas A, Tian L, Singamaneni S (2012) Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett 12:2645–2651. https://doi.org/10.1021/nl3012038

    Article  CAS  Google Scholar 

  29. Yoon JH, Yoon S (2013) Probing interfacial interactions using core-satellite plasmon rulers. Langmuir 29:14772–14778. https://doi.org/10.1021/la403599p

    Article  CAS  Google Scholar 

  30. Ode K, Honjo M, Takashima Y, Tsuruoka T, Akamatsu K (2016) Highly sensitive plasmonic optical sensors based on gold core-satellite nanostructures immobilized on glass substrates. ACS Appl Mater Inter 8:20522–20526. https://doi.org/10.1021/acsami.6b06313

    Article  CAS  Google Scholar 

  31. Noh S, An H, Shin JH, Shim JH (2017) Unexpected catalytic behavior of core-satellite gold nanostructures towards electroreduction of oxygen. Electrochem Commun 78:1–5. https://doi.org/10.1016/j.elecom.2017.03.013

    Article  CAS  Google Scholar 

  32. Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH (2014) Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. ACS Appl Mater Inter 6:11859–11863. https://doi.org/10.1021/am503675x

    Article  CAS  Google Scholar 

  33. Yoon JH, Lim J, Yoon S (2012) Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. ACS Nano 6:7199–7208. https://doi.org/10.1021/nn302264f

    Article  CAS  Google Scholar 

  34. Xie W, Walkenfort B, Schlucker S (2013) Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J Am Chem Soc 135:1657–1660. https://doi.org/10.1021/ja309074a

    Article  CAS  Google Scholar 

  35. Dey P, Zhu S, Thurecht KJ, Fredericks PM, Blakey I (2014) Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers. J Mater Chem B 2:2827–2837. https://doi.org/10.1039/c4tb00263f

    Article  CAS  Google Scholar 

  36. San Juan AMT, Chavva SR, Tu D, Tircuit M, Cote G, Mabbott S (2021) Synthesis of SERS-active core-satellite nanoparticles using heterobifunctional PEG linkers. Nanoscale Adv 4:258–267. https://doi.org/10.1039/d1na00676b

    Article  CAS  Google Scholar 

  37. Han F, Vivekchand SRC, Soeriyadi AH, Zheng Y, Gooding JJ (2018) Thermoresponsive plasmonic core-satellite nanostructures with reversible, temperature sensitive optical properties. Nanoscale 10:4284–4290. https://doi.org/10.1039/c7nr09218k

    Article  CAS  Google Scholar 

  38. Tian J, Huang B, Zhang W (2019) Precise self-assembly and controlled catalysis of thermoresponsive core-satellite multicomponent hybrid nanoparticles. Langmuir 35:266–275. https://doi.org/10.1021/acs.langmuir.8b03345

    Article  CAS  Google Scholar 

  39. Rossner C, Glatter O, Vana P (2017) Stimulus-responsive planet–satellite nanostructures as colloidal actuators: reversible contraction and expansion of the planet–satellite distance. Macromolecules 50:7344–7350. https://doi.org/10.1021/acs.macromol.7b01267

    Article  CAS  Google Scholar 

  40. Peng WT, Cai YY, Fanslau L, Vana P (2021) Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem-Uk 12:6198–6229. https://doi.org/10.1039/d1py01172c

    Article  CAS  Google Scholar 

  41. Rossner C, Vana P (2014) Planet-satellite nanostructures made to order by RAFT star polymers. Angew Chem Int Ed Engl 53:12639–12642. https://doi.org/10.1002/anie.201406854

    Article  CAS  Google Scholar 

  42. Peng W, Rossner C, Roddatis V, Vana P (2016) Gold-planet–silver-satellite nanostructures using RAFT star polymer. ACS Macro Lett 5:1227–1231. https://doi.org/10.1021/acsmacrolett.6b00681

    Article  CAS  Google Scholar 

  43. Wu L, Glebe U, Boker A (2017) Fabrication of thermoresponsive plasmonic core-satellite nanoassemblies with a tunable stoichiometry via surface-initiated reversible addition-fragmentation chain transfer polymerization from silica nanoparticles. Adv Mater Interfaces 4:1700092. https://doi.org/10.1002/admi.201700092

    Article  CAS  Google Scholar 

  44. Han F, Armstrong T, Andres-Arroyo A, Bennett D, Soeriyadi A, Alinezhad Chamazketi A, Bakthavathsalam P, Tilley RD, Gooding JJ, Reece PJ (2020) Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 12:1680–1687. https://doi.org/10.1039/c9nr07891f

    Article  CAS  Google Scholar 

  45. Lee S, Kim M, Yoon S (2019) Colour and SERS patterning using core-satellite nanoassemblies. Chem Commun 55:1466–1469. https://doi.org/10.1039/c8cc09270b

    Article  CAS  Google Scholar 

  46. Mei R, Wang Y, Liu W, Chen L (2018) Lipid bilayer-enabled synthesis of waxberry-like core-fluidic satellite nanoparticles: toward ultrasensitive surface-enhanced Raman scattering Tags for Bioimaging. ACS Appl Mater Inter 10:23605–23616. https://doi.org/10.1021/acsami.8b06253

    Article  CAS  Google Scholar 

  47. Behi M, Naficy S, Chandrawati R, Dehghani F (2020) Nanoassembled peptide biosensors for rapid detection of matrilysin cancer biomarker. Small 16:e1905994. https://doi.org/10.1002/smll.201905994

    Article  CAS  Google Scholar 

  48. Waldeisen JR, Wang T, Ross BM, Lee LP (2011) Disassembly of a core–satellite nanoassembled substrate for colorimetric biomolecular detection. ACS Nano 5:5383–5389. https://doi.org/10.1021/nn2002807

    Article  CAS  Google Scholar 

  49. Zhang Z, Bando K, Taguchi A, Mochizuki K, Sato K, Yasuda H, Fujita K, Kawata S (2017) Au-protected Ag core/satellite nanoassemblies for excellent extra-/intracellular surface-enhanced Raman scattering activity. ACS Appl Mater Inter 9:44027–44037. https://doi.org/10.1021/acsami.7b14976

    Article  CAS  Google Scholar 

  50. Choi I, Song HD, Lee S, Yang YI, Kang T, Yi J (2012) Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J Am Chem Soc 134:12083–12090. https://doi.org/10.1021/ja302684w

    Article  CAS  Google Scholar 

  51. Jin R, Liu Z, Bai Y, Zhou Y, Gooding JJ, Chen X (2018) Core–satellite mesoporous silica–gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Adv Funct Mater 28:1801961. https://doi.org/10.1002/adfm.201801961

    Article  CAS  Google Scholar 

  52. Weng ZQ, Wang HB, Vongsvivut J, Li RQ, Glushenkov AM, He J, Chen Y, Barrow CJ, Yang WR (2013) Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Anal Chim Acta 803:128–134. https://doi.org/10.1016/j.aca.2013.09.036

    Article  CAS  Google Scholar 

  53. Gellner M, Steinigeweg D, Ichilmann S, Salehi M, Schutz M, Kompe K, Haase M, Schlucker S (2011) 3D self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level. Small 7:3445–3451. https://doi.org/10.1002/smll.201102009

    Article  CAS  Google Scholar 

  54. Schutz M, Schlucker S (2015) Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity. Phys Chem Chem Phys 17:24356–24360. https://doi.org/10.1039/c5cp03189c

    Article  Google Scholar 

  55. Pazos-Perez N, Fitzgerald JM, Giannini V, Guerrini L, Alvarez-Puebla RA (2019) Modular assembly of plasmonic core–satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Adv 1:122–131. https://doi.org/10.1039/c8na00257f

    Article  CAS  Google Scholar 

  56. Kuttner C, Holler RPM, Quintanilla M, Schnepf MJ, Dulle M, Fery A, Liz-Marzan LM (2019) SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. Nanoscale 11:17655–17663. https://doi.org/10.1039/c9nr06102a

    Article  CAS  Google Scholar 

  57. Gandra N, Singamaneni S (2012) “Clicked” plasmonic core-satellites: covalently assembled gold nanoparticles. Chem Commun 48:11540–11542. https://doi.org/10.1039/c2cc36675d

    Article  CAS  Google Scholar 

  58. Yang X, Li J, Deng L, Su D, Dong C, Ren J (2019) Controllable “clicked-to-assembled” plasmonic core-satellite anostructures and its surface-enhanced fluorescence in living cells. ACS Omega 4:21161–21168. https://doi.org/10.1021/acsomega.9b02581

    Article  CAS  Google Scholar 

  59. Rong Z, Xiao R, Wang C, Wang D, Wang S (2015) Plasmonic Ag core-satellite nanostructures with a tunable silica-spaced nanogap for surface-enhanced Raman scattering. Langmuir 31:8129–8137. https://doi.org/10.1021/acs.langmuir.5b01713

    Article  CAS  Google Scholar 

  60. Tian L, Fei M, Tadepalli S, Morrissey JJ, Kharasch ED, Singamaneni S (2015) Bio-enabled gold superstructures with built-in and accessible electromagnetic hotspots. Adv Healthc Mater 4(1502–1509):1423. https://doi.org/10.1002/adhm.201500227

    Article  CAS  Google Scholar 

  61. Tian L, Tadepalli S, Fei M, Morrissey JJ, Kharasch ED, Singamaneni S (2015) Off-resonant gold superstructures as ultrabright minimally invasive surface-enhanced Raman scattering (SERS) Probes. Chem Mater 27:5678–5684. https://doi.org/10.1021/acs.chemmater.5b02100

    Article  CAS  Google Scholar 

  62. Lee JH, Oh JW, Nam SH, Cha YS, Kim GH, Rhim WK, Kim NH, Kim J, Han SW, Suh YD, Nam JM (2016) Synthesis, optical properties, and multiplexed Raman bio-imaging of surface roughness-controlled nanobridged nanogap particles. Small 12:4726–4734. https://doi.org/10.1002/smll.201600289

    Article  CAS  Google Scholar 

  63. Zhang W, Liu J, Niu W, Yan H, Lu X, Liu B (2018) Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering. ACS Appl Mater Inter 10:14850–14856. https://doi.org/10.1021/acsami.7b19328

    Article  CAS  Google Scholar 

  64. Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L (2020) Gold nanorod array-bridged internal-standard SERS tags: from ultrasensitivity to multifunctionality. ACS Appl Mater Inter 12:2059–2066. https://doi.org/10.1021/acsami.9b18292

    Article  CAS  Google Scholar 

  65. Zhao J, Long L, Weng G, Li J, Zhu J, Zhao J-W (2017) Multi-branch Au/Ag bimetallic core–shell–satellite nanoparticles as a versatile SERS substrate: the effect of Au branches in a mesoporous silica interlayer. J Mater Chem C 5:12678–12687. https://doi.org/10.1039/c7tc03788k

    Article  CAS  Google Scholar 

  66. Kumar D, Lee SB, Park CH, Kim CS (2018) Impact of ultrasmall platinum nanoparticle coating on different morphologies of gold nanostructures for multiple one-pot photocatalytic environment protection reactions. ACS Appl Mater Inter 10:389–399. https://doi.org/10.1021/acsami.7b12119

    Article  CAS  Google Scholar 

  67. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW (2019) Growth of spherical gold satellites on the surface of Au@Ag@SiO2 core-shell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein. ACS Appl Mater Inter 11:3617–3626. https://doi.org/10.1021/acsami.8b21238

    Article  CAS  Google Scholar 

  68. Hu J, Dong Y-l, Rahman Zu, Ma Y-h, Ren C-l, Chen X-g (2014) In situ preparation of core-satellites nanostructural magnetic-Au NPs composite for catalytic degradation of organic contaminants. Chem Eng J 254:514–523. https://doi.org/10.1016/j.cej.2014.05.140

    Article  CAS  Google Scholar 

  69. Liu N, Prall BS, Klimov VI (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J Am Chem Soc 128:15362–15363. https://doi.org/10.1021/ja0660296

    Article  CAS  Google Scholar 

  70. Dey P, Baumann V, Rodriguez-Fernandez J (2020) Gold nanorod assemblies: the roles of hot-spot positioning and anisotropy in plasmon coupling and SERS. Nanomaterials 10:942. https://doi.org/10.3390/nano10050942

    Article  CAS  Google Scholar 

  71. Pandey P, Kunwar S, Shin KH, Seo MK, Yoon J, Hong WK, Sohn JI (2021) Plasmonic core-shell-satellites with abundant electromagnetic hotspots for highly sensitive and reproducible SERS detection. Int J Mol Sci 22:12191. https://doi.org/10.3390/ijms222212191

    Article  CAS  Google Scholar 

  72. Wang YQ, Zhao T, He XW, Li WY, Zhang YK (2014) A novel core-satellite CdTe/Silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 51:40–46. https://doi.org/10.1016/j.bios.2013.07.028

    Article  CAS  Google Scholar 

  73. De Silva Indrasekara AS, Norton SJ, Geitner NK, Crawford BM, Wiesner MR, Vo-Dinh T (2018) Tailoring the core-satellite nanoassembly architectures by tuning internanoparticle electrostatic interactions. Langmuir 34:14617–14623. https://doi.org/10.1021/acs.langmuir.8b02792

    Article  CAS  Google Scholar 

  74. Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306. https://doi.org/10.1002/adma.200601178

    Article  CAS  Google Scholar 

  75. Chomette C, Duguet E, Mornet S, Yammine E, Manoharan VN, Schade NB, Hubert C, Ravaine S, Perro A, Treguer-Delapierre M (2016) Templated growth of gold satellites on dimpled silica cores. Faraday Discuss 191:105–116. https://doi.org/10.1039/c6fd00022c

    Article  CAS  Google Scholar 

  76. Zhang F, Zhu G, Wang K, Li M, Yang J (2019) Encapsulation of core-satellite silicon in carbon for rational balance of the void space and capacity. Chem Commun 55:10531–10534. https://doi.org/10.1039/c9cc05515k

    Article  CAS  Google Scholar 

  77. Xu K, Li J, Han Q, Zhang D, Zhang L, Zhang Z, Lu X (2022) Ultrasensitive detection of vitamin E by signal conversion combined with core-satellite structure-based plasmon coupling effect. Analyst 147:398–403. https://doi.org/10.1039/d1an02289j

    Article  CAS  Google Scholar 

  78. Fu L, Chen Q, Jia L (2022) Carbon dots and gold nanoclusters assisted construction of a ratiometric fluorescent biosensor for detection of Gram-negative bacteria. Food Chem 374:131750. https://doi.org/10.1016/j.foodchem.2021.131750

    Article  CAS  Google Scholar 

  79. Bertorelle F, Pinto M, Zappon R, Pilot R, Litti L, Fiameni S, Conti G, Gobbo M, Toffoli G, Colombatti M, Fracasso G, Meneghetti M (2018) Safe core-satellite magneto-plasmonic nanostructures for efficient targeting and photothermal treatment of tumor cells. Nanoscale 10:976–984. https://doi.org/10.1039/c7nr07844g

    Article  CAS  Google Scholar 

  80. Wang G, Guo Y, Liu Y, Zhou W, Wang G (2021) Algorithm-assisted detection and imaging of microRNAs in living cancer cells via the disassembly of plasmonic core-satellite probes coupled with strand displacement amplification. ACS Sens 6:958–966. https://doi.org/10.1021/acssensors.0c02136

    Article  CAS  Google Scholar 

  81. Wissler J, Wehmeyer M, Bakker S, Knauer S, Schlucker S (2018) Simultaneous Rayleigh/Mie and Raman/fluorescence characterization of molecularly functionalized colloids by correlative single-particle real-time imaging in suspension. Anal Chem 90:723–728. https://doi.org/10.1021/acs.analchem.7b02528

    Article  CAS  Google Scholar 

  82. Tang M, Wang L, Zhao D, Huang D (2021) Ag@mSiO2@Ag core–satellite nanostructures enhance the antibacterial and anti-inflammatory activities of naringin. Aip Adv 11:055217. https://doi.org/10.1063/5.0050866

    Article  CAS  Google Scholar 

  83. Chen H, Hu H, Tao C, Clauson RM, Moncion I, Luan X, Hwang S, Sough A, Sansanaphongpricha K, Liao J, Paholak HJ, Stevers NO, Wang G, Liu B, Sun D (2019) Self-assembled Au@Fe core/satellite magnetic nanoparticles for versatile biomolecule functionalization. ACS Appl Mater Inter 11:23858–23869. https://doi.org/10.1021/acsami.9b05544

    Article  CAS  Google Scholar 

  84. Abbas M, RamuluTorati S, Kim C (2017) Multifunctional Fe3O4/Au core/satellite nanocubes: an efficient chemical synthesis, characterization and functionalization of streptavidin protein. Dalton Trans 46:2303–2309. https://doi.org/10.1039/c6dt04486g

    Article  CAS  Google Scholar 

  85. Lv B, Sun ZL, Zhang JF, Jing CY (2017) Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(VI). Colloid Surface A 513:234–240. https://doi.org/10.1016/j.colsurfa.2016.10.048

    Article  CAS  Google Scholar 

  86. Ye P, Li F, Zou J, Luo Y, Wang S, Lu G, Zhang F, Chen C, Long J, Jia R, Shi M, Wang Y, Cheng X, Ma G, Wei W (2022) In situ generation of gold nanoparticles on bacteria-derived magnetosomes for imaging-guided starving/chemodynamic/photothermal synergistic therapy against cancer. Adv Funct Mater 32:2110063. https://doi.org/10.1002/adfm.202110063

    Article  CAS  Google Scholar 

  87. Fan W, Yang D, Ding N, Chen P, Wang L, Tao G, Zheng F, Ji S (2021) Application of core-satellite polydopamine-coated Fe3O4 nanoparticles-hollow porous molecularly imprinted polymer combined with HPLC-MS/MS for the quantification of macrolide antibiotics. Anal Methods 13:1412–1421. https://doi.org/10.1039/d0ay02025g

    Article  CAS  Google Scholar 

  88. Jiang X, Hao C, Zhang H, Wu X, Xu L, Sun M, Xu C, Kuang H (2021) Dual-modal FexCuySe and upconversion nanoparticle assemblies for intracellular microRNA-21 detection. ACS Appl Mater Inter 13:41405–41413. https://doi.org/10.1021/acsami.0c00434

    Article  CAS  Google Scholar 

  89. Pu HB, Zhu HF, Xu F, Sun DW (2022) Development of core-satellite-shell structured MNP@Au@MIL-100(Fe) substrates for surface-enhanced Raman spectroscopy and their applications in trace level determination of malachite green in prawn. J Raman Spectrosc 53:682–693. https://doi.org/10.1002/jrs.6293

    Article  CAS  Google Scholar 

  90. Feng J, Xu D, Yang F, Chen J, Wu C, Yin Y (2021) Surface engineering and controlled ripening for seed-mediated growth of Au islands on Au nanocrystals. Angew Chem Int Ed Engl 60:16958–16964. https://doi.org/10.1002/anie.202105856

    Article  CAS  Google Scholar 

  91. Kumar D, Lee SB, Park CH, Kim CS (2018) Bimetallic-graphene sandwiched core-satellite colloidal nanodendrites as an efficient visible-NIR-sun light active photo-system for carbon dioxide reduction. Chem Commun 54:1571–1574. https://doi.org/10.1039/c7cc08811f

    Article  CAS  Google Scholar 

  92. Kumar D, Park CH, Kim CS (2018) Robust multimetallic plasmonic core-satellite nanodendrites: highly effective visible-light-induced colloidal CO2 photoconversion system. Acs Sustain Chem Eng 6:8604–8614. https://doi.org/10.1021/acssuschemeng.8b00924

    Article  CAS  Google Scholar 

  93. Wang LW, Huang XY, Zhu YK, Jiang PK (2018) Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles. Phys Chem Chem Phys 20:5001–5011. https://doi.org/10.1039/c7cp07990g

    Article  CAS  Google Scholar 

  94. Li XL, Bottini M, Zhang LY, Zhang S, Chen J, Zhang TB, Liu L, Rosato N, Ma XB, Shi XH, Wu Y, Guo WS, Liang XJ (2019) Core-satellite nanomedicines for in Vivo real-time monitoring of enzyme-activatable drug release by fluorescence and photoacoustic dual-modal imaging. ACS Nano 13:176–186. https://doi.org/10.1021/acsnano.8b05136

    Article  CAS  Google Scholar 

  95. Chen YC, Chou YC, Chang JH, Chen LT, Huang CJ, Chau LK, Chen YL (2021) Dual-functional gold-iron oxide core-satellite hybrid nanoparticles for sensitivity enhancement in biosensors via nanoplasmonic and preconcentration effects. Analyst 146:6935–6943. https://doi.org/10.1039/d1an01334c

    Article  CAS  Google Scholar 

  96. Hu C, Hu Y, Fan C, Yang L, Zhang Y, Li H, Xie W (2021) Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew Chem Int Ed Engl 60:19774–19778. https://doi.org/10.1002/anie.202103888

    Article  CAS  Google Scholar 

  97. Mamontova E, Rodríguez-Castillo M, Oliviero E, Guari Y, Larionova J, Monge M, Long J (2021) Designing heterostructured core@satellite Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity. Inorg Chem Front 8:2248–2260. https://doi.org/10.1039/d1qi00008j

    Article  CAS  Google Scholar 

  98. Qin Y, Wu Y, Wang B, Wang J, Yao W (2021) Facile synthesis of Ag@Au core-satellite nanowires for highly sensitive SERS detection for tropane alkaloids. J Alloy Compd 884:161053. https://doi.org/10.1016/j.jallcom.2021.161053

    Article  CAS  Google Scholar 

  99. Wang J, Zhang C, Liu Z, Li S, Ma P, Gao F (2021) Target-triggered nanomaterial self-assembly induced electromagnetic hot-spot generation for SERS-fluorescence dual-mode in situ monitoring MiRNA-guided phototherapy. Anal Chem 93:13755–13764. https://doi.org/10.1021/acs.analchem.1c01338

    Article  CAS  Google Scholar 

  100. Liu C, Chen C, Li S, Dong H, Dai W, Xu T, Liu Y, Yang F, Zhang X (2018) Target-triggered catalytic hairpin assembly-induced core-satellite nanostructures for high-sensitive “off-to-on” SERS detection of intracellular microRNA. Anal Chem 90:10591–10599. https://doi.org/10.1021/acs.analchem.8b02819

    Article  CAS  Google Scholar 

  101. Zhang LJ, Huang R, Shen YW, Liu J, Wu Y, Jin JM, Zhang H, Sun Y, Chen HZ, Luan X (2021) Enhanced anti-tumor efficacy by inhibiting HIF-1alpha to reprogram TAMs via core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy. Biomater Sci 9:6403–6415. https://doi.org/10.1039/d1bm00675d

    Article  CAS  Google Scholar 

  102. Feng F, Ma Z (2016) Sensitive electrochemical detection of hydrazine based on hollow core-satellite hZnS@Au nanoparticles. Sensor Actuat B: Chem 232:9–15. https://doi.org/10.1016/j.snb.2016.03.127

    Article  CAS  Google Scholar 

  103. Gao F, Sun M, Ma W, Wu X, Liu L, Kuang H, Xu C (2017) A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv Mater 29:1606864. https://doi.org/10.1002/adma.201606864

    Article  CAS  Google Scholar 

  104. Hao Y, Li Y, Song L, Deng Z (2021) Flash synthesis of spherical nucleic acids with record DNA density. J Am Chem Soc 143:3065–3069. https://doi.org/10.1021/jacs.1c00568

    Article  CAS  Google Scholar 

  105. Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286–9287. https://doi.org/10.1021/ja061980b

    Article  CAS  Google Scholar 

  106. Xing H, Wang Z, Xu Z, Wong NY, Xiang Y, Liu GL, Lu Y (2012) DNA-directed assembly of asymmetric nanoclusters using janus nanoparticles. ACS Nano 6:802–809. https://doi.org/10.1021/nn2042797

    Article  CAS  Google Scholar 

  107. Sebba DS, Mock JJ, Smith DR, LaBean TH, Lazarides AA (2008) Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett 8:1803–1808. https://doi.org/10.1021/nl080029h

    Article  CAS  Google Scholar 

  108. Meng D, Ma W, Wu X, Xu C, Kuang H (2020) DNA-driven two-layer core-satellite gold nanostructures for ultrasensitive microRNA detection in living cells. Small 16:e2000003. https://doi.org/10.1002/smll.202000003

    Article  CAS  Google Scholar 

  109. Chou LY, Zagorovsky K, Chan WC (2014) DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat Nanotechnol 9:148–155. https://doi.org/10.1038/nnano.2013.309

    Article  CAS  Google Scholar 

  110. Lismont M, Paez CA, Dreesen L (2015) A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. J Colloid Interface Sci 447:40–49. https://doi.org/10.1016/j.jcis.2015.01.065

    Article  CAS  Google Scholar 

  111. Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25:2596–2600. https://doi.org/10.1021/la900113e

    Article  CAS  Google Scholar 

  112. Kang CY, Li JJ, Wu LA, Wu CC, Chen YF (2018) Dynamic and reversible accumulation of plasmonic core-satellite nanostructures in a light-induced temperature gradient for in situ SERS detection. Part Part Syst Char 35:1700405. https://doi.org/10.1002/ppsc.201700405

    Article  CAS  Google Scholar 

  113. Yang Y, Zhao J, Weng GJ, Li JJ, Zhu J, Zhao JW (2020) Fine-tunable fluorescence quenching properties of core-satellite assemblies of gold nanorod-nanosphere: Application in sensitive detection of Hg(2). Spectrochim Acta A Mol Biomol Spectrosc 228:117776. https://doi.org/10.1016/j.saa.2019.117776

    Article  CAS  Google Scholar 

  114. Liu Y, Zhang YY, Kou QW, Wang DD, Han DL, Lu ZY, Chen Y, Chen L, Wang YX, Zhang YJ, Yang JH, Xing S (2018) Fe3O4/Au binary nanocrystals: Facile synthesis with diverse structure evolution and highly efficient catalytic reduction with cyclability characteristics in 4-nitrophenol. Powder Technol 338:26–35. https://doi.org/10.1016/j.powtec.2018.06.037

    Article  CAS  Google Scholar 

  115. Gao R, Xu L, Hao C, Xu C, Kuang H (2019) Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells. Angew Chem Int Ed Engl 58:3913–3917. https://doi.org/10.1002/anie.201814282

    Article  CAS  Google Scholar 

  116. Xiong W, Sikdar D, Yap LW, Premaratne M, Li X, Cheng W (2015) Multilayered core-satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale 7:3445–3452. https://doi.org/10.1039/c4nr06756h

    Article  CAS  Google Scholar 

  117. Dey P, Tabish TA, Mosca S, Palombo F, Matousek P, Stone N (2020) P Plasmonic nanoassemblies: tentacles beat satellites for boosting broadband NIR plasmon coupling providing a novel candidate for SERS and photothermal therapy. Small 16:e1906780. https://doi.org/10.1002/smll.201906780

    Article  CAS  Google Scholar 

  118. Tang L, Yu G, Tan L, Li M, Deng X, Liu J, Li A, Lai X, Hu J (2017) Highly stabilized core-satellite gold nanoassemblies in vivo: DNA-directed self-assembly, PEG modification and cell imaging. Sci Rep 7:8553. https://doi.org/10.1038/s41598-017-08903-0

    Article  CAS  Google Scholar 

  119. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  120. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422. https://doi.org/10.1126/science.1089171

    Article  CAS  Google Scholar 

  121. Ross BM, Waldeisen JR, Wang T, Lee LP (2009) Strategies for nanoplasmonic core-satellite biomolecular sensors: theory-based design. Appl Phys Lett 95:193112. https://doi.org/10.1063/1.3254756

    Article  CAS  Google Scholar 

  122. Albrecht MG, Creighton JA (2002) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217. https://doi.org/10.1021/ja00457a071

    Article  Google Scholar 

  123. Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118:4946–4980. https://doi.org/10.1021/acs.chemrev.7b00668

    Article  CAS  Google Scholar 

  124. Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16021. https://doi.org/10.1038/natrevmats.2016.21

    Article  CAS  Google Scholar 

  125. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626. https://doi.org/10.1146/annurev.anchem.1.031207.112814

    Article  CAS  Google Scholar 

  126. Liang MM, Wang YH, Shao R, Yang WM, Zhang H, Zhang H, Yang ZL, Li JF, Tian ZQ (2017) In situ electrochemical surface-enhanced Raman spectroscopy study of CO electrooxidation on PtFe nanocatalysts. Electrochem Commun 81:38–42. https://doi.org/10.1016/j.elecom.2017.05.022

    Article  CAS  Google Scholar 

  127. Choi J-H, Choi J-W (2020) Metal-enhanced fluorescence by bifunctional Au nanoparticles for highly sensitive and simple detection of proteolytic enzyme. Nano Lett 20:7100–7107. https://doi.org/10.1021/acs.nanolett.0c02343

    Article  CAS  Google Scholar 

  128. Sun J, Zhang X, Li T, Xie J, Shao B, Xue D, Tang X, Li H, Liu Y (2019) Ultrasensitive on-site detection of biological active ricin in complex food matrices based on immunomagnetic enrichment and fluorescence switch-on nanoprobe. Anal Chem 91:6454–6461. https://doi.org/10.1021/acs.analchem.8b04458

    Article  CAS  Google Scholar 

  129. Gao R, Li D, Zhang Q, Zheng S, Ren X, Deng W (2021) GNPs-QDs core–satellites assembly: trimodal platform for on-site identification and detection of TNT in complex media. Sensor Actuat B: Chem 328:128960. https://doi.org/10.1016/j.snb.2020.128960

    Article  CAS  Google Scholar 

  130. Mazur F, Liu L, Li H, Huang J, Chandrawati R (2018) Core-satellite gold nanoparticle biosensors for monitoring cobalt ions in biological samples. Sensor Actuat B: Chem 268:182–187. https://doi.org/10.1016/j.snb.2018.04.089

    Article  CAS  Google Scholar 

  131. Hao C, Xu L, Sun M, Ma W, Kuang H, Xu C (2018) Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv Funct Mater 28:1802372. https://doi.org/10.1002/adfm.201802372

    Article  CAS  Google Scholar 

  132. Liu YB, Zhai TT, Liang YY, Wang YB, Xia XH (2019) Gold core-satellite nanostructure linked by oligonucleotides for detection of glutathione with LSPR scattering spectrum. Talanta 193:123–127. https://doi.org/10.1016/j.talanta.2018.09.096

    Article  CAS  Google Scholar 

  133. Ghotra G, Le NH, Hayder H, Peng C, Chen JIL (2021) Multiplexed and single-cell detection of microRNA with plasmonic nanoparticle assemblies. Can J Chem 99:585–593. https://doi.org/10.1139/cjc-2021-0023

    Article  CAS  Google Scholar 

  134. Wang C, Du Y, Wu Q, Xuan S, Zhou J, Song J, Shao F, Duan H (2013) Stimuli-responsive plasmonic core-satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. Chem Commun 49:5739–5741. https://doi.org/10.1039/c3cc80005a

    Article  CAS  Google Scholar 

  135. Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR (2010) Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 10:1374–1382. https://doi.org/10.1021/nl100010v

    Article  CAS  Google Scholar 

  136. Zhao X, Wu X, Xu L, Ma W, Kuang H, Wang L, Xu C (2015) Building heterogeneous core-satellite chiral assemblies for ultrasensitive toxin detection. Biosens Bioelectron 66:554–558. https://doi.org/10.1016/j.bios.2014.12.021

    Article  CAS  Google Scholar 

  137. Cai J, Hao C, Sun M, Ma W, Xu C, Kuang H (2018) Chiral shell core-satellite nanostructures for ultrasensitive detection of mycotoxin. Small 14:e1703931. https://doi.org/10.1002/smll.201703931

    Article  CAS  Google Scholar 

  138. Zhu YC, Xu F, Zhang N, Zhao WW, Xu JJ, Chen HY (2017) DNA sequence functionalized with heterogeneous core-satellite nanoassembly for novel energy-transfer-based photoelectrochemical bioanalysis. Biosens Bioelectron 91:293–298. https://doi.org/10.1016/j.bios.2016.12.045

    Article  CAS  Google Scholar 

  139. Wang FC, Li Q, Zhang PJ, Liu XH, Li A, Yang J, Liu DB (2018) Assembly of DNA probes into superstructures for dramatically enhancing enzymatic stability and signal-to-background ratio. Acs Sensors 3:2702–2708. https://doi.org/10.1021/acssensors.8b01247

    Article  CAS  Google Scholar 

  140. Sriram M, Markhali BP, Nicovich PR, Bennett DT, Reece PJ, Hibbert DB, Tilley RD, Gaus K, Vivekchand SRC, Gooding JJ (2018) A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis. Biosens Bioelectron 117:530–536. https://doi.org/10.1016/j.bios.2018.06.066

    Article  CAS  Google Scholar 

  141. Wu Q, Chen G, Qiu S, Feng S, Lin D (2021) A target-triggered and self-calibration aptasensor based on SERS for precise detection of a prostate cancer biomarker in human blood. Nanoscale 13:7574–7582. https://doi.org/10.1039/d1nr00480h

    Article  CAS  Google Scholar 

  142. Yang K, Hu Y, Dong N, Zhu G, Zhu T, Jiang N (2017) A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron 94:286–291. https://doi.org/10.1016/j.bios.2017.02.048

    Article  CAS  Google Scholar 

  143. Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF (2021) Multiplexed SERS detection of microcystins with aptamer-driven core-satellite assemblies. ACS Appl Mater Inter 13:6545–6556. https://doi.org/10.1021/acsami.0c21493

    Article  CAS  Google Scholar 

  144. Wang G, Yu M, Wang G (2019) A versatile dynamic light scattering strategy for the sensitive detection of microRNAs based on plasmonic core-satellites nanoassembly coupled with strand displacement reaction. Biosens Bioelectron 138:111319. https://doi.org/10.1016/j.bios.2019.111319

    Article  CAS  Google Scholar 

  145. Tian B, Ma J, Qiu Z, Gomez Z, de la Torre T, Donolato M, Hansen MF, Svedlindh P, Stromberg M (2017) Optomagnetic detection of microRNA based on duplex-specific nuclease-assisted target recycling and multilayer core-satellite magnetic superstructures. ACS Nano 11:1798–1806. https://doi.org/10.1021/acsnano.6b07763

    Article  CAS  Google Scholar 

  146. Chen RZ, Shi HY, Meng XY, Su YY, Wang HY, He Y (2019) Dual-amplification strategy-based SERS chip for sensitive and reproducible detection of DNA methyltransferase activity in human serum. Anal Chem 91:3597–3603. https://doi.org/10.1021/acs.analchem.8b05595

    Article  CAS  Google Scholar 

  147. Zhao X, Xu L, Sun M, Ma W, Wu X, Kuang H, Wang L, Xu C (2016) Gold-quantum dot core-satellite assemblies for lighting up microRNA in vitro and in vivo. Small 12:4662–4668. https://doi.org/10.1002/smll.201503629

    Article  CAS  Google Scholar 

  148. Li MX, Xu CH, Zhang N, Qian GS, Zhao W, Xu JJ, Chen HY (2018) Exploration of the kinetics of toehold-mediated strand displacement via plasmon rulers. ACS Nano 12:3341–3350. https://doi.org/10.1021/acsnano.7b08673

    Article  CAS  Google Scholar 

  149. Qu A, Xu L, Sun M, Liu L, Kuang H, Xu C (2017) Photoactive hybrid AuNR-Pt@Ag2S core-satellite nanostructures for near-infrared quantitive cell imaging. Adv Funct Mater 27:1703408. https://doi.org/10.1002/adfm.201703408

    Article  CAS  Google Scholar 

  150. Li Q, Ge X, Ye J, Li Z, Su L, Wu Y, Yang H, Song J (2021) Dual ratiometric SERS and photoacoustic core-satellite nanoprobe for quantitatively visualizing hydrogen peroxide in inflammation and cancer. Angew Chem Int Ed Engl 60:7323–7332. https://doi.org/10.1002/anie.202015451

    Article  CAS  Google Scholar 

  151. Wang S, Lin J, Wang Z, Zhou Z, Bai R, Lu N, Liu Y, Fu X, Jacobson O, Fan W, Qu J, Chen S, Wang T, Huang P, Chen X (2017) Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Adv Mater 29:1701013. https://doi.org/10.1002/adma.201701013

    Article  CAS  Google Scholar 

  152. Shi H, Lou J, Lin S, Wang Y, Hu Y, Zhang P, Liu Y, Zhang Q (2021) Diatom-like silica-protein nanocomposites for sustained drug delivery of ruthenium polypyridyl complexes. J Inorg Biochem 221:111489. https://doi.org/10.1016/j.jinorgbio.2021.111489

    Article  CAS  Google Scholar 

  153. Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J (2013) Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv Funct Mater 23:4324–4331. https://doi.org/10.1002/adfm.201300411

    Article  CAS  Google Scholar 

  154. Zhang D, Wang K, Wei W, Liu Y, Liu S (2021) Multifunctional plasmonic core-satellites nanoprobe for cancer diagnosis and therapy based on a cascade reaction induced by microRNA. Anal Chem 93:9521–9530. https://doi.org/10.1021/acs.analchem.1c01539

    Article  CAS  Google Scholar 

  155. Kim J, Cho HR, Jeon H, Kim D, Song C, Lee N, Choi SH, Hyeon T (2017) Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc 139:10992–10995. https://doi.org/10.1021/jacs.7b05559

    Article  CAS  Google Scholar 

  156. Wu H, Li F, Wang S, Lu J, Li J, Du Y, Sun X, Chen X, Gao J, Ling D (2018) Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 151:66–77. https://doi.org/10.1016/j.biomaterials.2017.10.018

    Article  CAS  Google Scholar 

  157. Xing C, Liu D, Chen J, Fan Y, Zhou F, Kaur K, Cai W, Li Y (2020) Convective self-assembly of 2D nonclose-packed binary Au nanoparticle arrays with tunable optical properties. Chem Mater 33:310–319. https://doi.org/10.1021/acs.chemmater.0c03799

    Article  CAS  Google Scholar 

  158. Zhou C, Long M, Qin Y, Sun X, Zheng J (2011) Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Engl 50:3168–3172. https://doi.org/10.1002/anie.201007321

    Article  CAS  Google Scholar 

  159. Gao Y, Yang SC, Zhu MH, Zhu XD, Luan X, Liu XL, Lai X, Yuan Y, Lu Q, Sun P, Lovell JF, Chen HZ, Fang C (2021) Metal Phenolic network-integrated multistage nanosystem for enhanced drug delivery to solid tumors. Small 17:e2100789. https://doi.org/10.1002/smll.202100789

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grant No. 11774283.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-wu Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Q., Zhu, J., Weng, Gj. et al. Core-satellite nanostructures and their biomedical applications. Microchim Acta 189, 470 (2022). https://doi.org/10.1007/s00604-022-05559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05559-0

Keywords

Navigation