Skip to main content
Log in

Visible light-responsive vanadium-based metal–organic framework supported pepsin with high oxidase mimic activity for food spoilage monitoring

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photo-induced metal–organic framework-enzyme hybrid nanosystem was developed via a controllable physical embedding method that displays dual enzymatic and photo-non-enzymatic strategy which cause high stability and cascade catalytic performance to oxidation of o-phenylenediamine and generate a UV–Vis signal at 450 nm for the tracing and sensitive detection of putrescine (Put). Under optimal conditions, the present bioassay provides a wide detection range from 0.02 to 10 µM and 20–80 µM with a detection limit of 5.5 nM, which is more desirable than numerous previous reports. In addition, the established colorimetric photo-bioassay can selectively and accurately identify Put in the presence of other distributing species. The present work provides an elegant strategy to merged photo-nanozymes’ and enzyme capabilities and also broadened the sensing strategies of photo-nanozymes with promising potential in the realm of cancer diagnosis and food quality monitoring as well as its potential in various bioassays and heterogeneous catalysis fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh H, Singh G, Kaur N, Singh N (2022) Pattern-based colorimetric sensor array to monitor food spoilage using automated high-throughput analysis. Biosens Bioelectron 196:113687

    Article  CAS  Google Scholar 

  2. Kim H, Trinh BT, Kim KH, Moon J, Kang H, Jo K, Akter R, Jeong J, Lim E-K, Jung J (2021) Au@ ZIF-8 SERS paper for food spoilage detection. Biosens Bioelectron 179:113063

    Article  CAS  Google Scholar 

  3. Andre RS, Ngo QP, Fugikawa-Santos L, Correa DS, Swager TM (2021) Wireless tags with hybrid nanomaterials for volatile amine detection. ACS Sensors 6(6):2457–2464

    Article  CAS  Google Scholar 

  4. Gao J-X, Qin L, Wen S-Y, Huang X-H, Dong X-P, Zhou D-Y, Zhu B-W (2021) Simultaneous determination of acrylamide, 5-hydroxymethylfurfural, and heterocyclic aromatic amines in thermally processed foods by ultrahigh-performance liquid chromatography coupled with a Q exactive HF-X mass spectrometer. J Agric Food Chem 69(7):2325–2336

    Article  CAS  Google Scholar 

  5. Świder O, Roszko MŁ, Wójcicki M, Szymczyk K (2019) Biogenic amines and free amino acids in traditional fermented vegetables—dietary risk evaluation. J Agric Food Chem 68(3):856–868

    Article  Google Scholar 

  6. Watanabe M, Ohta Y, Licang S, Motoyama N, Kikuchi J (2015) Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality. Food Chem 169:387–395

    Article  CAS  Google Scholar 

  7. Kim KH, Park CS, Park SJ, Kim J, Seo SE, An JE, Ha S, Bae J, Phyo S, Lee J (2022) In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosens Bioelectron 200:113908

    Article  CAS  Google Scholar 

  8. Orouji A, Ghasemi F, Bigdeli A, Hormozi-Nezhad MR (2021) Providing multicolor plasmonic patterns with Au@ Ag core–shell nanostructures for visual discrimination of biogenic amines. ACS Appl Mater Interfaces 13(17):20865–20874

    Article  CAS  Google Scholar 

  9. Qi X-N, Che Y-X, Qu W-J, Zhang Y-M, Yao H, Lin Q, Wei T-B (2021) Design and Fabricating biogenic amine-responsive platform based on self-assembly property of phenazine derivative for visual monitoring of meat spoilage. Sens Actuators, B Chem 333:129430

    Article  CAS  Google Scholar 

  10. Draz ME, Darwish HW, Darwish IA, Saad AS (2021) Solid-state potentiometric sensor for the rapid assay of the biologically active biogenic amine (tyramine) as a marker of food spoilage. Food Chem 346:128911

    Article  CAS  Google Scholar 

  11. Mairal Lerga T, Jauset-Rubio M, Skouridou V, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O’Sullivan CK (2019) High affinity aptamer for the detection of the biogenic amine histamine. Anal Chem 91(11):7104–7111

    Article  CAS  Google Scholar 

  12. Roy R, Sajeev NR, Sharma V, Koner AL (2019) Aggregation induced emission switching based ultrasensitive ratiometric detection of biogenic diamines using a perylenediimide-based smart fluoroprobe. ACS Appl Mater Interfaces 11(50):47207–47217

    Article  CAS  Google Scholar 

  13. Sudalaimani S, Kumar KS, Esokkiya A, Suresh C, Giribabu K (2021) Electrified liquid–liquid interface as an electrochemical tool for the sensing of putrescine and cadaverine. Analyst 146(10):3208–3215

    Article  CAS  Google Scholar 

  14. Vargas AJ, Wertheim BC, Gerner EW, Thomson CA, Rock CL, Thompson PA (2012) Dietary polyamine intake and risk of colorectal adenomatous polyps. Am J Clin Nutr 96(1):133–141

    Article  CAS  Google Scholar 

  15. Leelasree T, Aggarwal H (2022) MOF sensors for food safety: ultralow detection of putrescine and cadaverine in protein rich foods. J Mater Chem C 10(6):2121

    Article  CAS  Google Scholar 

  16. Del Rio B, Redruello B, Linares DM, Ladero V, Ruas-Madiedo P, Fernandez M, Martin MC, Alvarez MA (2019) The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci Rep 9(1):1–7

    Google Scholar 

  17. Lin X, Tang Y, Hu Y, Lu Y, Sun Q, Lv Y, Zhang Q, Wu C, Zhu M, He Q (2021) Sodium reduction in traditional fermented foods: challenges, strategies, and perspectives. J Agric Food Chem 69(29):8065–8080

    Article  CAS  Google Scholar 

  18. Betancourt L, Rada P, Hernandez L, Araujo H, Ceballos G, Hernandez L, Tucci P, Mari Z, De Pasquale M, Paredes D (2018) Micellar electrokinetic chromatography with laser induced fluorescence detection shows increase of putrescine in erythrocytes of Parkinson’s disease patients. J Chromatogr B 1081:51–57

    Article  Google Scholar 

  19. Leonardo S, Campàs M (2016) Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchim Acta 183(6):1881–1890

    Article  CAS  Google Scholar 

  20. Noreldeen HA, Yang L, Guo X-Y, He S-B, Peng H-P, Deng H-H, Chen W (2022) A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Analyst 147(1):101–108

    Article  CAS  Google Scholar 

  21. Jain R, Thakur A, Kaur P, Kim K-H, Devi P (2020) Advances in imaging-assisted sensing techniques for heavy metals in water: trends, challenges, and opportunities. TrAC, Trends Anal Chem 123:115758

    Article  CAS  Google Scholar 

  22. Li Z-M, Zhong X-L, Wen S-H, Zhang L, Liang R-P, Qiu J-D (2019) Colorimetric detection of methyltransferase activity based on the enhancement of CoOOH nanozyme activity by ssDNA. Sens Actuators, B Chem 281:1073–1079

    Article  CAS  Google Scholar 

  23. Li M, Chen J, Wu W, Fang Y, Dong S (2020) Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc 142(36):15569–15574

    Article  CAS  Google Scholar 

  24. Zhang J, Liu J (2020) Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale 12(5):2914–2923

    Article  CAS  Google Scholar 

  25. Wu S, Zhang J, Wu P (2019) Photo-modulated nanozymes for biosensing and biomedical applications. Anal Methods 11(40):5081–5088

    Article  CAS  Google Scholar 

  26. Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, Sun Y, Zhang Q, Yang H, Zhang F (2019) A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem 131(36):12754–12761

    Article  Google Scholar 

  27. Yu S, Jang D, Maji SK, Chung K, Lee JS, Mota FM, Wang J, Kim S, Kim DH (2021) Sophisticated plasmon-enhanced photo-nanozyme for anti-angiogenic and tumor-microenvironment-responsive combinatorial photodynamic and photothermal cancer therapy. J Ind Eng Chem 104:106–116

    Article  CAS  Google Scholar 

  28. Zhang J, Wu S, Lu X, Wu P, Liu J (2019) Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett 19(5):3214–3220

    Article  CAS  Google Scholar 

  29. Lin Y, Liu X, Liu Z, Xu Y (2021) Visible-light-driven photocatalysis-enhanced nanozyme of TiO2 nanotubes@ MoS2 nanoflowers for efficient wound healing infected with multidrug-resistant bacteria. Small 17(39):2103348

    Article  CAS  Google Scholar 

  30. Liu C, Zhang M, Geng H, Zhang P, Zheng Z, Zhou Y, He W (2021) NIR enhanced peroxidase-like activity of Au@ CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl Catal B 295:120317

    Article  CAS  Google Scholar 

  31. Liu Y, Zhou M, Cao W, Wang X, Wang Q, Li S, Wei H (2019) Light-responsive metal–organic framework as an oxidase mimic for cellular glutathione detection. Anal Chem 91(13):8170–8175

    Article  CAS  Google Scholar 

  32. Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y (2020) Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun 56(77):11338–11353

    Article  CAS  Google Scholar 

  33. Wang D, Jana D, Zhao Y (2020) Metal–organic framework derived nanozymes in biomedicine. Acc Chem Res 53(7):1389–1400

    Article  CAS  Google Scholar 

  34. Wang X, Jiang X, Wei H (2020) Phosphate-responsive 2d-metal–organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J Mater Chem B 8(31):6905–6911

    Article  CAS  Google Scholar 

  35. Wu J, Yu Y, Cheng Y, Cheng C, Zhang Y, Jiang B, Zhao X, Miao L, Wei H (2021) Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47 (V) metal–organic framework nanozyme for therapy. Angew Chem 133(3):1247–1254

    Article  Google Scholar 

  36. Mandal S, Prasad SR, Mandal D, Das P (2019) Bovine serum albumin amplified reactive oxygen species generation from anthrarufin-derived carbon dot and concomitant nanoassembly for combination antibiotic–photodynamic therapy application. ACS Appl Mater Interfaces 11(36):33273–33284

    Article  CAS  Google Scholar 

  37. Deng Q, Wang R, Wang Y, Yang Z, Gou B, Li J, Yan Y, Yang R (2022) Exploration of bifunctional vanadium-based metal-organic framework with double active centers for potassium-ion batteries. J Colloid Interface Sci 628:556–565

    Article  CAS  Google Scholar 

  38. He B, Zhang Q, Man P, Zhou Z, Li C, Li Q, Xie L, Wang X, Pang H, Yao Y (2019) Self-sacrificed synthesis of conductive vanadium-based metal–organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 64:103935

    Article  CAS  Google Scholar 

  39. Ishimaru M, Muto Y, Nakayama A, Hatate H, Tanaka R (2019) Determination of biogenic amines in fish meat and fermented foods using column-switching high-performance liquid chromatography with fluorescence detection. Food Anal Methods 12(1):166–175

    Article  Google Scholar 

  40. Liu J, Lin C, Zhang W, Yang Q, Meng J, He L, Deng L, Zeng X (2021) Exploring the bacterial community for starters in traditional high-salt fermented Chinese fish (Suanyu). Food Chem 358:129863

    Article  CAS  Google Scholar 

  41. Šimat V, Dalgaard P (2011) Use of small diameter column particles to enhance HPLC determination of histamine and other biogenic amines in seafood. LWT-Food Sci Technol 44(2):399–406

    Article  Google Scholar 

  42. Li H, Wu J, Wang L, Liao Q, Niu X, Zhang D, Wang K (2022) A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal–organic framework. Chem Eng J 428:131071

    Article  CAS  Google Scholar 

  43. Niu B, Yao B, Zhu M, Guo H, Ying S, Chen Z (2021) Carbon paste electrode modified with fern leave-like MIL-47 (as) for electrochemical simultaneous detection of Pb (II), Cu (II) and Hg (II). J Electroanal Chem 886:115121

    Article  CAS  Google Scholar 

  44. Feng W, Zhao T, Zhou Y, Li F, Zou Y, Bai S, Wang W, Yang L, Wu X (2013) Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skin. Pharmacogn Mag 9(Suppl 1):S32

    Google Scholar 

  45. Barthelet K, Marrot J, Riou D, Férey G (2002) A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. Angew Chem Int Ed 41(2):281–284

    Article  CAS  Google Scholar 

  46. Zhao C, He Y, Wang X, Sun W (2021) Photoelectrochemical determination of oxidase activity based on photoinduced direct electron transfer of protein by using a convenient photoelectrochemical detector. Sens Actuators, B Chem 328:128992

    Article  CAS  Google Scholar 

  47. Mishra A, Kumar A, Hodges D, Misra R (2017) Tunable TiO2–pepsin thin film as a low-temperature electron transport layer for photoelectrochemical cells. Mater Technol 32(13):829–837

    Article  CAS  Google Scholar 

  48. Mansingh S, Subudhi S, Sultana S, Swain G, Parida K (2021) Cerium-based metal–organic framework nanorods nucleated on CeO2 nanosheets for photocatalytic N2 fixation and water oxidation. ACS Applied Nano Mater 4(9):9635–9652

    Article  CAS  Google Scholar 

  49. Karimi R, Yousefi F, Ghaedi M, Dashtian K, Yasin G (2022) Unveiling charge dynamics of Co3S4 nanowalls/CdS nanospheres nn heterojunction for efficient photoelectrochemical Cr (VI) detoxification and N2 fixation. J Environ Chem Eng 10:108549

    Article  CAS  Google Scholar 

  50. Kröger J, Jiménez-Solano A, Savasci G, Lau VWh, Duppel V, Moudrakovski I, Küster K, Scholz T, Gouder A, Schreiber ML (2021) Morphology control in 2D carbon nitrides: Impact of particle size on optoelectronic properties and photocatalysis. Adv Func Mater 31(28):2102468

    Article  Google Scholar 

  51. Denisov N, Zhou X, Cha G, Schmuki P (2021) Photocurrent conversion efficiency of TiO2 nanotube photoanodes in dependence of illumination intensity. Electrochim Acta 377:137988

    Article  CAS  Google Scholar 

  52. Liu G-Q, Yang Y, Li Y, Zhuang T, Li X-F, Wicks J, Tian J, Gao M-R, Peng J-L, Ju H-X (2021) Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. Nat Commun 12(1):1–9

    Google Scholar 

  53. Dashtian K, Shahbazi S, Tayebi M, Masoumi Z (2021) A review on metal-organic frameworks photoelectrochemistry: a headlight for future applications. Coord Chem Rev 445:214097

    Article  CAS  Google Scholar 

  54. Ning P, Liang J, Li L, Chen D, Qin L, Yao X, Chen H, Huang Y (2021) In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport. J Colloid Interface Sci 590:407–414

    Article  CAS  Google Scholar 

  55. Dashtian K, Ghaedi M, Hajati S (2019) Photo-sensitive Pb5S2I6 crystal incorporated polydopamine biointerface coated on nanoporous TiO2 as an efficient signal-on photoelectrochemical bioassay for ultrasensitive detection of Cr (VI) ions. Biosens Bioelectron 132:105–114

    Article  CAS  Google Scholar 

  56. Dashtian K, Hajati S, Ghaedi M (2020) L-phenylalanine-imprinted polydopamine-coated CdS/CdSe nn type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosens Bioelectron 165:112346

    Article  CAS  Google Scholar 

  57. Huai X, Girardi L, Lu R, Gao S, Zhao Y, Ling Y, Rizzi GA, Granozzi G, Zhang Z (2019) The mechanism of concentric HfO2/Co3O4/TiO2 nanotubes investigated by intensity modulated photocurrent spectroscopy (IMPS) and electrochemical impedance spectroscopy (EIS) for photoelectrochemical activity. Nano Energy 65:104020

    Article  CAS  Google Scholar 

  58. Li F, Yang H, Zhuo Q, Zhou D, Wu X, Zhang P, Yao Z, Sun L (2021) A cobalt@ cucurbit [5] uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew Chem 133(4):2004–2013

    Article  Google Scholar 

  59. Dashtian K, Hajati S, Ghaedi M (2021) Ti-based solid-state imprinted-Cu2O/CuInSe2 heterojunction photoelectrochemical platform for highly selective dopamine monitoring. Sensors and Actuators B: Chemical 326:128824

  60. Zhan Y, Yang S, Luo F, Guo L, Zeng Y, Qiu B, Lin Z (2020) Emission wavelength switchable carbon dots combined with biomimetic inorganic nanozymes for a two-photon fluorescence immunoassay. ACS Appl Mater Interfaces 12(27):30085–30094

    Article  CAS  Google Scholar 

  61. Cui J, Pottosin I, Lamade E, Tcherkez G (2020) What is the role of putrescine accumulated under potassium deficiency? Plant Cell Environ 43(6):1331–1347

    Article  CAS  Google Scholar 

  62. Munawar T, Yasmeen S, Hasan M, Mahmood K, Hussain A, Ali A, Arshad M, Iqbal F (2020) Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram Int 46(8):11101–11114

    Article  CAS  Google Scholar 

  63. Jana A, Kundu P, Paul S, Kondaiah P, Chakravarty AR (2022) Cobalt (III) complexes for light-activated delivery of acetylacetonate-BODIPY, cellular Imaging, and Photodynamic Therapy. Inorg Chem 61:6837

    Article  CAS  Google Scholar 

  64. Zhang Y, Zeng X, Jiang X, Chen H, Long Z (2019) Ce-based UiO-66 metal-organic frameworks as a new redox catalyst for atomic spectrometric determination of Se (VI) and colorimetric sensing of Hg (II). Microchem J 149:103967

    Article  CAS  Google Scholar 

  65. Jiao J, Yan X, Xing S, Zhang T, Han Q (2022) Design of a polyoxometalate-based metal–organic framework for photocatalytic C (sp3)–H oxidation of toluene. Inorg Chem 61(5):2421–2427

    Article  CAS  Google Scholar 

  66. Zhao C, Jiang Z, Mu R, Li Y (2016) A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks–hydrogen peroxide–o-phenylenediamine system. Talanta 159:365–370

    Article  CAS  Google Scholar 

  67. Ma X, Wen S, Xue X, Guo Y, Jin J, Song W, Zhao B (2018) Controllable synthesis of SERS-active magnetic metal–organic framework-based nanocatalysts and their application in photoinduced enhanced catalytic oxidation. ACS Appl Mater Interfaces 10(30):25726–25736

    Article  CAS  Google Scholar 

  68. Yin Y, Gao C, Xiao Q, Lin G, Lin Z, Cai Z, Yang H (2016) Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl Mater Interfaces 8(42):29052–29061

    Article  CAS  Google Scholar 

  69. Sardar R, Ahmed S, Yasin NA (2022) Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. Int J Phytorem 24(9):955–962

    Article  CAS  Google Scholar 

  70. Collado-González J, Piñero MC, Otálora G, López-Marín J, Amor FMd (2021) The effect of foliar putrescine application, ammonium exposure, and heat stress on antioxidant compounds in cauliflower waste. Antioxidants 10(5):707

    Article  Google Scholar 

  71. Cai S, Fu Z, Xiao W, Xiong Y, Wang C, Yang R (2020) Zero-dimensional/two-dimensional Au x Pd100–x nanocomposites with enhanced nanozyme catalysis for sensitive glucose detection. ACS Appl Mater Interfaces 12(10):11616–11624

    Article  CAS  Google Scholar 

  72. Nagvenkar AP, Gedanken A (2016) Cu0. 89Zn0. 11O, a new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl Mater Inter 8(34):22301–22308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouholah Zare-Dorabei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1473 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifnezhad, A.H., Dashtian, K., Zare-Dorabei, R. et al. Visible light-responsive vanadium-based metal–organic framework supported pepsin with high oxidase mimic activity for food spoilage monitoring. Microchim Acta 189, 448 (2022). https://doi.org/10.1007/s00604-022-05554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05554-5

Keywords

Navigation