Skip to main content
Log in

A deep eutectic solvent magnetic molecularly imprinted polymer for extraction of laminarin from seaweeds

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic molecular imprinted polymers (MIPs) based on 4-vinylbenzyltrimethylammonium chloride (VBTAC) and 4-vinylbenzoic acid (VBA) deep eutectic solvent as dual functional monomers was successfully synthesized for the specific recognition of laminarin. The MIPs were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometer analysis. The results showed that the MIPs were spheres of a uniform size, with the surface rich in cavities and excellent superparamagnetism properties. The adsorption experiments showed that MIPs conform to pseudo-second-order kinetics and Langmuir isotherm adsorption. The maximum adsorption capacity under optimal conditions was 322.58 μg·mg−1 and the imprinting factor was 2.13. Under the optimized conditions, the limit of detection (LOD) of the developed material was 6.6 µM. Linearity of the material was obtained within the range 20–800 µM with a coefficient of determination (r2) being better 0.999. Relative standard deviations (RSDs) were less than 3.96%, and satisfactory recoveries were between 94.55 and 97.39%. The actual sample analysis manifested that MIPs could effectively separate laminarin from Laminarin japonica Aiesch.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Youssouf L, Lallemand L, Giraud P, Soulé F, Bhaw-Luximon A, Meilhac O, Hellencourt CLD, Jhurry D, Couprie J (2017) Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohyd Polym 166:55–63. https://doi.org/10.1016/j.carbpol.2017.01.041

    Article  CAS  Google Scholar 

  2. Abraham RE, Su P, Puri M, Raston CL, Zhang W (2019) Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea potatorum. Algal Res 38:101389. https://doi.org/10.1016/j.algal.2018.101389

    Article  Google Scholar 

  3. Rhein-Knudsen N, Ale MT, Ajalloueian F, Yu L, Meyer AS (2017) Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloid 63:50–58. https://doi.org/10.1016/j.foodhyd.2016.08.023

    Article  CAS  Google Scholar 

  4. Helbert W (2017) marine polysaccharide sulfatases. Front Mar Sci 4:486–498. https://doi.org/10.3389/fmars.2017.00006

    Article  Google Scholar 

  5. Yang J, Lim SY (2021) Fucoidans and bowel health. Mar Drugs 19:436. https://doi.org/10.3390/md19080436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li YT, Huo YF, Wang F, Wang C, Zhu Q, Wang YB, Fu LL, Zhou T (2020) Improved antioxidant and immunomodulatory activities of enzymatically degradedPorphyra haitanensis polysaccharides. J Food Biochem 44:e13189. https://doi.org/10.1111/jfbc.13189

    Article  PubMed  Google Scholar 

  7. Peng Y, Song Y, Wang Q, Hu Y, He Y, Ren D, Wu L, Liu S, Cong H, Zhou H (2019) In vitro and in vivo immunomodulatory effects of fucoidan compound agents. Int J Biol Macromol 127:48–56. https://doi.org/10.1016/j.ijbiomac.2018.12.197

    Article  CAS  PubMed  Google Scholar 

  8. Rasin AB, Silchenko AS, Kusaykin MI, Malyarenko OS, Zueva AO, Kalinovsky AI, Airong J, Surits VV, Ermakova SP (2020) Enzymatic transformation and anti-tumor activity of Sargassum horneri fucoidan. Carbohyd Polym 246:116635. https://doi.org/10.1016/j.carbpol.2020.116635

    Article  CAS  Google Scholar 

  9. Khotimchenko M, Tiasto V, Kalitnik A, Begun M, Khotimchenko R, Leonteva E, Bryukhovetskiy I, Khotimchenko Y (2020) Antitumor potential of carrageenans from marine red algae. Carbohyd Polym 246:116568. https://doi.org/10.1016/j.carbpol.2020.116568

    Article  CAS  Google Scholar 

  10. Lai H, Yang L, Lin P, Lai S, Wang M (2020) Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system. Int J Biol Macromol 155:951–960. https://doi.org/10.1016/j.ijbiomac.2019.11.054

    Article  CAS  PubMed  Google Scholar 

  11. Tang W, Liu D, Yin J, Nie S (2020) Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. Trends Food Sci Tech 99:76–87. https://doi.org/10.1016/j.tifs.2020.02.015

    Article  CAS  Google Scholar 

  12. Zhou T, Ding L, Che G, Jiang W, Sang L (2019) Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: preparation and application in sample pretreatment. Trends Anal Chem 114:11–28. https://doi.org/10.1016/j.trac.2019.02.028

    Article  CAS  Google Scholar 

  13. Huang Y, Pan J, Liu Y, Wang M, Deng S, Xia Z (2019) A SPE method with two MIPs in two Steps for improving the selectivity of MIPs. Anal Chem 91:8436–8442. https://doi.org/10.1021/acs.analchem.9b01453

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Wright C, Dincel O, Chi T, Kameoka J (2020) A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors-Basel 20:1098. https://doi.org/10.3390/s20041098

    Article  CAS  PubMed Central  Google Scholar 

  15. Claude B, Morin P, Lafosse M, Belmont A, Haupt K (2008) Selective solid-phase extraction of a triterpene acid from a plant extract by molecularly imprinted polymer. Talanta 75:344–350. https://doi.org/10.1016/j.talanta.2007.11.037

    Article  CAS  PubMed  Google Scholar 

  16. Karrat A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L (2022) A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Anal Chim Acta 1203:339709. https://doi.org/10.1016/j.aca.2022.339709

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Q, Zhao H, Huang W, Yang X, Yao L, Liu J, Li J, Wang J (2019) Dual functional monomer surface molecularly imprinted microspheres for polysaccharide recognition in aqueous solution. Anal Methods-UK 11(21):2800–2808. https://doi.org/10.1039/C9AY00132H

    Article  CAS  Google Scholar 

  18. Huang W, Yang X, Zhao S, Zhang M, Hu X, Wang J, Zhao H (2013) Fast and selective recognizes polysaccharide by surface molecularly imprinted film coated onto aldehyde-modified magnetic nanoparticles. Analyst 138:6653–6661. https://doi.org/10.1039/c3an01149f

    Article  CAS  PubMed  Google Scholar 

  19. Li G, Row KH (2017) Magnetic molecularly imprinted polymers for recognition and enrichment of polysaccharides from seaweed. J Sep Sci 44:4765–4772. https://doi.org/10.1002/jssc.201700947

    Article  CAS  Google Scholar 

  20. Zhang R, Zhang T, Lv Y, Qin P, Li H, Li J, Tan T (2019) Selective binding of heparin oligosaccharides in a magnetic thermoresponsive molecularly imprinted polymer. Talanta 201:441–449. https://doi.org/10.1016/j.talanta.2019.04.050

    Article  CAS  PubMed  Google Scholar 

  21. Orihara K, Hikichi A, Arita T, Muguruma H, Yoshimi Y (2018) Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor. J Pharmaceut Biomed 151:324–330. https://doi.org/10.1016/j.jpba.2018.01.012

    Article  CAS  Google Scholar 

  22. Ansari S (2017) Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: recent developments and trends. TrAC, Trends Anal Chem 90:89–106. https://doi.org/10.1016/j.trac.2017.03.001

    Article  CAS  Google Scholar 

  23. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular Imprinting: green perspectives and strategies. Adv Mater 33:2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  24. Arabi M, Ostovan A, Bagheri AR, Guo X, Li J, Ma J, Chen L (2020) Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta 215:120933. https://doi.org/10.1016/j.talanta.2020.120933

    Article  CAS  PubMed  Google Scholar 

  25. He X, Wang Y, Li H, Chen J, Liu Z, Xu F, Zhou Y (2021) Specific recognition of protein by deep eutectic solvent–based magnetic β-cyclodextrin molecularly imprinted polymer. Microchim Acta 188:702–715. https://doi.org/10.1007/s00604-021-04887-x

    Article  CAS  Google Scholar 

  26. Costa AMS, Rodrigues JMM, Pérez-Madrigal MM, Dove AP, Mano JF (2020) Modular functionalization of Laminarin to create value-added naturally derived macromolecules. J Am Chem Soc 142:19689–19697. https://doi.org/10.1021/jacs.0c09489

    Article  CAS  PubMed  Google Scholar 

  27. Pessagno F, Hasanah AN, Manesiotis P (2018) Molecularly imprinted ‘traps’ for sulfonylureas prepared using polymerisable ion pairs. RSC Adv 8:14212–14220. https://doi.org/10.1039/C8RA01135D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu B, Han M, Guan G, Wang S, Liu R, Zhang Z (2011) Highly-controllable molecular imprinting at superparamagnetic iron oxide nanoparticles for ultrafast enrichment and separation. The Journal of Physical Chemistry C 115:17320–17327. https://doi.org/10.1021/jp205327q

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Jiangxi Provincial Natural Science Foundation Key Project (No.20192ACBL20028), National Natural Science Foundation of China (No.81760708), Jiangxi Provincial Academic and Technology Project for Main Disciplines Leader (No.20162BCB22016), Major Foundation of Jiangxi Provincial Education Ministry (No.GJJ160809), and Harbin Special Foundation for Excellent Academic Leader Project (No.2014RFXXJ113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Li or Xin Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11763 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhao, Q., Zhou, X. et al. A deep eutectic solvent magnetic molecularly imprinted polymer for extraction of laminarin from seaweeds. Microchim Acta 189, 399 (2022). https://doi.org/10.1007/s00604-022-05488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05488-y

Keywords

Navigation