Skip to main content
Log in

Iron porphyrin-based porous organic polymer with high peroxidase-like activity as colorimetric sensor for glutathione and ascorbic acid assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new iron porphyrin-based organic polymer (Fe-POP) was synthesized through the William ether reaction. The as-prepared Fe-POP presented high chemical stability, wide pore distribution, high iron content, and strong affinity with 3,3’,5,5’-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), which contributed to its excellent peroxidase-mimicking performance. In the presence of H2O2, Fe-POP could catalyze the transparent TMB into blue ox-TMB, which could be easily distinguished by the naked eyes. Moreover, glutathione (GSH) and ascorbic acid (AA) could convert blue ox-TMB into colorless TMB due to the inhibitory effect of GSH/AA to the catalytic oxidation of TMB. Based on this phenomenon, a rapid and sensitive colorimetric method for the assay of H2O2, GSH, and AA was developed using Fe-POP as sensor. The detection limits of H2O2, GSH, and AA  were 1.37, 0.44, and 0.33 μM, respectively. Finally, the colorimetric method based on Fe-POP was used to evaluate the GSH and AA content in real samples, which provided the guidance for GSH and AA supplements in our daily diet, suggesting the significant potential of Fe-POP in practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo D, Li C, Liu G, Luo X, Wu FS (2021) Oxidase mimetic activity of a metalloporphyrin-containing porous organic polymer and its applications for colorimetric detection of both ascorbic acid and glutathione. Acs Sustain Chem Eng 9:5412–5421. https://doi.org/10.1021/acssuschemeng.1c00419

    Article  CAS  Google Scholar 

  2. Iskusnykh IY, Zakharova AA, Pathak D (2022) Glutathione in brain disorders and aging. Molecules 27:324. https://doi.org/10.3390/molecules27010324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu Q, Sun H, Zhou X, Gong X, Xiao L, Liu L, Yang ZQ (2020) Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem 325:126946. https://doi.org/10.1016/j.foodchem.2020.126946

    Article  CAS  PubMed  Google Scholar 

  4. Chen A, Peng X, Pan Z, Shao K, Wang J, Fan M (2018) Visual assay of glutathione in vegetables and fruits using quantum dot ratiometric hybrid probes. J Agric Food Chem 66:6431–6438. https://doi.org/10.1021/acs.jafc.8b00662

    Article  CAS  PubMed  Google Scholar 

  5. Wang T, Hu Y, Liang M, Song L, Li T, Zhang X, Li N, Huang X (2022) Synthesis of a cerium-based nanomaterial with superior oxidase-like activity for colorimetric determination of glutathione in food samples. Mikrochim Acta 189:132. https://doi.org/10.1007/s00604-022-05197-6

    Article  CAS  PubMed  Google Scholar 

  6. Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen H, Chen X (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg(2)(+) chemosensor. J Agric Food Chem 63:1747–1755. https://doi.org/10.1021/jf505759z

    Article  CAS  PubMed  Google Scholar 

  7. Jin Q, Li Y, Huo J, Zhao X (2016) The “off–on” phosphorescent switch of Mn-doped ZnS quantum dots for detection of glutathione in food, wine, and biological samples. Sensor Actuat B-Chem 227:108–116. https://doi.org/10.1016/j.snb.2015.12.036

    Article  CAS  Google Scholar 

  8. Hu L, Ju M, Gao A, Chen H, Hou A (2022) A supersensitive fluorescent probe for biothiols by regulating the click reaction and its application in glutathione detection in food samples. Dyes Pigments 200:110164. https://doi.org/10.1016/j.dyepig.2022.110164

    Article  CAS  Google Scholar 

  9. Xie J, Cheng D, Li P, Xu Z, Zhu X, Zhang Y, Li H, Liu X, Liu M, Yao S (2021) Au/metal-organic framework nanocapsules for electrochemical determination of glutathione. Acs Appl Nano Mater 4:4853–4862. https://doi.org/10.1021/acsanm.1c00394

    Article  CAS  Google Scholar 

  10. Yue J, Mei Q, Wang P, Miao P, Dong WF, Li L (2022) A yellow fluorescence probe for the detection of oxidized glutathione and biological imaging. Acs Appl Mater Inter 14:17119–17127. https://doi.org/10.1021/acsami.2c01857

    Article  CAS  Google Scholar 

  11. Abdelhamid HN, Sharmoukh W (2021) Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J 163:105873. https://doi.org/10.1016/j.microc.2020.105873

    Article  CAS  Google Scholar 

  12. Brundu S, Nencioni L, Celestino I, Coluccio P, Palamara AT, Magnani M, Fraternale A (2016) Validation of a reversed-phase high performance liquid chromatography method for the simultaneous analysis of cysteine and reduced glutathione in mouse organs. Oxid Med Cell Longev 2016:1746985–1746985. https://doi.org/10.1155/2016/1746985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akrivi EA, Vlessidis AG, Kourkoumelis N, Giokas DL, Tsogas GZ (2022) Gold-activated luminol chemiluminescence for the selective determination of cysteine over homocysteine and glutathione. Talanta 245:123464–123464. https://doi.org/10.1016/j.talanta.2022.123464

    Article  CAS  PubMed  Google Scholar 

  14. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  15. Kitchawengkul N, Prakobkij A, Anutrasakda W, Yodsin N, Jungsuttiwong S, Chunta S, Amatatongchai M, Jarujamrus P (2021) Mimicking peroxidase-like activity of nitrogen-doped carbon dots (N-CDs) coupled with a laminated three-dimensional microfluidic paper-based analytical device (laminated 3D-mu PAD) for smart sensing of total cholesterol from whole blood. Anal Chem 93:6989–6999. https://doi.org/10.1021/acs.analchem.0c05459

    Article  CAS  PubMed  Google Scholar 

  16. Bandi R, Alle M, Park C-W, Han S-Y, Kwon G-J, Kim N-H, Kim J-C, Lee S-H (2021) Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sensor Actuat B-Chem 330:129330. https://doi.org/10.1016/j.snb.2020.129330

    Article  CAS  Google Scholar 

  17. Zhang H, Liu S (2021) Mixing concentrated sulfuric acid and diethylenetriamine at room temperature: a rapid and facile approach to synthesize fluorescent carbon polymer hollow spheres as peroxidase mimics. J Colloid Interf Sci 582:405–411. https://doi.org/10.1016/j.jcis.2020.08.048

    Article  CAS  Google Scholar 

  18. Xu B, Li S, Zheng L, Liu Y, Han A, Zhang J, Huang Z, Xie H, Fan K, Gao L, Liu H (2022) A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv Mater 34:2107088. https://doi.org/10.1002/adma.202107088

    Article  CAS  Google Scholar 

  19. Liang X, Han L (2020) White peroxidase-mimicking nanozymes: colorimetric pesticide assay without interferences of O-2 and color. Adv Funct Mater 30:1933. https://doi.org/10.1002/adfm.202001933

    Article  CAS  Google Scholar 

  20. Feng L, Zhang L, Chu S, Zhang S, Chen X, Du Z, Gong Y, Wang H (2022) Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Appl Surf Sci 583:152496. https://doi.org/10.1016/j.apsusc.2022.152496

    Article  CAS  Google Scholar 

  21. Wang X, Sun X, Bu T, Wang Q, Jia P, Dong M, Wang L (2022) In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos Part B-Eng 229:109465. https://doi.org/10.1016/j.compositesb.2021.109465

    Article  CAS  Google Scholar 

  22. Ma Y, Zhao Y, Xu X, Ding S, Li Y (2021) Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 235:122798. https://doi.org/10.1016/j.talanta.2021.122798

    Article  CAS  PubMed  Google Scholar 

  23. Abdelhamid HN, Mahmoud GA, Sharmouk W (2020) A cerium-based MOFzyme with multi-enzyme-like activity for the disruption and inhibition of fungal recolonization. J Mater Chem B 8:7548–7556. https://doi.org/10.1039/d0tb00894j

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Wang J, Zhao C, Zhou F, Yao C, Song C (2022) Ultra-fast colorimetric detection of glutathione by magnetic Fe NPs with peroxidase-like activity. Sensor Actuat B-Chem 361:131750. https://doi.org/10.1016/j.snb.2022.131750

    Article  CAS  Google Scholar 

  25. AbhijnaKrishna R, Velmathi S (2022) A review on fluorimetric and colorimetric detection of metal ions by chemodosimetric approach 2013–2021. Coordin Chem Rev 459:214401. https://doi.org/10.1016/j.ccr.2021.214401

    Article  CAS  Google Scholar 

  26. Liu Y, Yan J, Huang Y, Sun Z, Zhang H, Fu L, Li X, Jin Y (2022) Single-atom Fe-anchored nano-diamond with enhanced dual-enzyme mimicking performance for H2O2 and glutathione detection. Front Bioeng Biotech 9:790849. https://doi.org/10.3389/fbioe.2021.790849

    Article  Google Scholar 

  27. Zhang J, Xu Q, Pei W, Cai L, Yu X, Jiang H, Chen J (2021) Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int J Biol Macromol 193:2103–2112. https://doi.org/10.1016/j.ijbiomac.2021.11.042

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Li Z, Ding R, Liu T, Zhao H, Zhang X (2022) Construction of porphyrin and viologen-linked cationic porous organic polymer for efficient and selective gold recovery. J Hazard Mater 426:128073. https://doi.org/10.1016/j.jhazmat.2021.128073

    Article  CAS  PubMed  Google Scholar 

  29. Zhu W, Ding ZD, Wang X, Li T, Shen R, Li Y, Li Z, Ren X, Gu ZG (2017) A three-dimensional porphyrin-based porous organic polymer with excellent biomimetic catalytic performance. Poly Chem 8:4327–4331. https://doi.org/10.1039/c7py00876g

    Article  CAS  Google Scholar 

  30. Li Y, Fang Y, Gao W, Guo X, Zhang X (2020) Porphyrin-based porous organic polymer as peroxidase mimics for sulfide-ion colorimetric sensing. Acs Sustain Chem Eng 8:10870–10880. https://doi.org/10.1021/acssuschemeng.0c03045

    Article  CAS  Google Scholar 

  31. Cui C, Wang Q, Liu Q, Deng X, Liu T, Li D, Zhang X (2018) Porphyrin-based porous organic framework: an efficient and stable peroxidase-mimicking nanozyme for detection of H2O2 and evaluation of antioxidant. Sensor Actuat B-Chem 277:86–94. https://doi.org/10.1016/j.snb.2018.08.097

    Article  CAS  Google Scholar 

  32. Jin C, Lian J, Gao Y, Guo K, Wu K, Gao L, Zhang X, Zhang X, Liu Q (2019) Si doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione. Acs Sustain Chem Eng 7:13989–13998. https://doi.org/10.1021/acssuschemeng.9b02459

    Article  CAS  Google Scholar 

  33. Lian J, Liu P, Jin C, Shi Z, Luo X, Liu Q (2019) Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Mikrochim Acta 186:332. https://doi.org/10.1007/s00604-019-3439-0

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Liu X, Wang M, Wang X, Ma W, Li J (2021) Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sensor Actuat B-Cheml 329:129115. https://doi.org/10.1016/j.snb.2020.129115

    Article  CAS  Google Scholar 

  35. Fan S, Zhao M, Ding L, Li H, Chen S (2017) Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron 89:846–852. https://doi.org/10.1016/j.bios.2016.09.108

    Article  CAS  PubMed  Google Scholar 

  36. Zheng X, Lian Q, Zhou L, Jiang Y, Gao J (2021) Peroxidase mimicking of binary polyacrylonitrile-CuO nanoflowers and the application in colorimetric detection of H2O2 and ascorbic acid. Acs Sustain Chem Eng 9:7030–7043. https://doi.org/10.1021/acssuschemeng.1c00723

    Article  CAS  Google Scholar 

  37. Li C, Zeng J, Guo D, Liu L, Xiong L, Luo X, Hu Z, Wu F (2021) Cobalt-doped carbon quantum dots with peroxidase-mimetic activity for ascorbic acid detection through both fluorometric and colorimetric methods. Acs Appl Mater Interf 13:49453–49461. https://doi.org/10.1021/acsami.1c13198

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (NSFC) (grant no. 21601142), Outstanding Young and Middle-aged Scientific Innovation Team of Colleges and Universities of Hubei Province: “Biomass chemical technologies and materials” (grant no. T201908), the Innovation Project of Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry (grant no. 2022BEEA06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genyan Liu or Fengshou Wu.

Ethics declarations

Competing interest

The authors reported no declarations of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1312 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Tong, S., Luo, X. et al. Iron porphyrin-based porous organic polymer with high peroxidase-like activity as colorimetric sensor for glutathione and ascorbic acid assay. Microchim Acta 189, 384 (2022). https://doi.org/10.1007/s00604-022-05471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05471-7

Keywords

Navigation