Skip to main content
Log in

Sensitive colorimetric sensing of glutathione and H2O2 based on enhanced peroxidase mimetic activity of MXene@Fe3O4

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The peroxidase-like activity of MXene@Fe3O4 nanocomposites and the relevant colorimetric application have been investigated for the first time. According to a kinetic study, MXene@Fe3O4 nanocomposites displayed higher peroxidase activity than their individual components, and the catalytic process followed a ping-pong mechanism. The improved peroxidase-like activity of the MXene@Fe3O4 nanocomposites was obtained due to the synergetic impact of the Fe3O4 and MXene phases, the huge ion-accessible interface, and quick electron transfer channels in the nanocomposites. In the presence of hydrogen peroxide (H2O2), the MXene@Fe3O4 nanocomposites can catalyze the reaction of the colorless substrate 3, 3, 5, 5-tetramethylbenzidine (TMB) into oxidized TMB which revealed a blue color at 652 nm. After the introduction of glutathione (GSH), the blue color was gradually fading owing to the hydroxyl radical scavenging effect of glutathione. A colorimetric detection platform based on the peroxidase-like activity of the MXene@Fe3O4 nanocomposites was developed for H2O2 and GSH with a detection limit of 0.4 μM and 0.5 μM, respectively. The calibration plot for glutathione detection is calculated by absorbance difference at 652 nm, which ranged from 0.5 to 10 μM with a detection limit of 0.2 μM. The recoveries of GSH with different concentrations ranged from 93.76 to 108.50% and the relative standard deviation from 0.30 to 5.96%. This work significantly extends the application of MXene@Fe3O4 nanocomposites in the construction of colorimetric sensors and reveals a satisfactory result in real sample analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calabrese G, Morgan B, Riemer J (2017) Mitochondrial glutathione: regulation and functions. Antioxid Redox Sign 15:1162–1177. https://doi.org/10.1089/ars.2017.7121

    Article  CAS  Google Scholar 

  2. Bjorklund G, Tinkov AA, Hosnedlova B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV (2020) The role of glutathione redox imbalance in autism spectrum disorder: a review. Free Radic Biol Med 160:149–162. https://doi.org/10.1016/j.freeradbiomed.2020.07.017

    Article  CAS  Google Scholar 

  3. Anaya-Sanchez A, Feng Y, Berude JC, Portnoy DA (2021) Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog 8(17):e1009819. https://doi.org/10.1371/journal.ppat.1009819

    Article  CAS  Google Scholar 

  4. Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-Donne I (2017) Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radical Bio Med 112:360–375. https://doi.org/10.1016/j.freeradbiomed.2017.08.008

    Article  CAS  Google Scholar 

  5. Bjørklund G, Peana M, Maes M, Dadar M, Severin B (2021) The glutathione system in Parkinson’s disease and its progression. Neurosci Biobehav Rev 120:470–478. https://doi.org/10.1016/j.neubiorev.2020.10.004

    Article  CAS  Google Scholar 

  6. Forgacsova A, Galba J, Mojzisova J, Mikus P, Piestansky J, Kovac A (2019) Ultra-high performance hydrophilic interaction liquid chromatography–triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. J Pharmaceut Biomed 164:442–451. https://doi.org/10.1016/j.jpba.2018.10.053

    Article  CAS  Google Scholar 

  7. Wei C, Liu X, Gao Y, Wu Y, Guo X, Ying Y, Wen Y, Yang H (2018) Thiol–disulfide exchange reaction for cellular glutathione detection with surface-enhanced Raman scattering. Anal Chem 19:11333–11339. https://doi.org/10.1021/acs.analchem.8b01974

    Article  CAS  Google Scholar 

  8. Zhang Q, Xiao Y, Su M, Zhang P, Gong Y, Ding C (2020) Two-photon background-free fluorescence assay for glutathione over cysteine and homocysteinein vitro and vivo. Chem Commun 47:6380–6383. https://doi.org/10.1039/D0CC01637C

    Article  Google Scholar 

  9. Wang Y, Jiang L, Chu L, Liu W, Wu S, Wu Y, He X, Wang K (2017) Electrochemical detection of glutathione by using thymine-rich DNA-gated switch functionalized mesoporous silica nanoparticles. Biosens Bioelectron 87:459–465. https://doi.org/10.1016/j.bios.2016.08.102

    Article  CAS  Google Scholar 

  10. Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U (2020) Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 1:233–262. https://doi.org/10.1039/c8cs00981c

    Article  CAS  Google Scholar 

  11. Wang H, Wan K, Shi X (2018) Recent advances in nanozyme research. Adv Mater 45:1805368. https://doi.org/10.1002/adma.201805368

    Article  CAS  Google Scholar 

  12. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 9:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  13. Jin L, Sun Y, Shi L, Li C, Shen Y (2019) PdPt bimetallic nanowires with efficient oxidase mimic activity for the colorimetric detection of acid phosphatase in acidic media. J Mater Chem B 29:4561–4567. https://doi.org/10.1039/C9TB00730J

    Article  Google Scholar 

  14. Garg B, Bisht T (2016) Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 12:1653. https://doi.org/10.3390/molecules21121653

    Article  CAS  Google Scholar 

  15. Zhao X, Zhang N, Yang T, Liu D, Jing X, Wang D, Yang Z, Xie Y, Meng L (2021) Bimetallic metal–organic frameworks: enhanced peroxidase-like activities for the self-activated cascade reaction. Acs Appl Mater Inter 30:36106–36116. https://doi.org/10.1021/acsami.1c05615

    Article  CAS  Google Scholar 

  16. Im JK, Sohn EJ, Kim S, Jang M, Son A, Zoh K, Yoon Y (2021) Review of MXene-based nanocomposites for photocatalysis. Chemosphere 270:129478. https://doi.org/10.1016/j.chemosphere.2020.129478

    Article  CAS  Google Scholar 

  17. Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z, Li W, Guo Y, Liu J, Yang Z, Wang H, Jin L (2020) MXene composite nanofibers for cell culture and tissue engineering. ACS Appl Bio Mater 4:2125–2131. https://doi.org/10.1021/acsabm.0c00007

    Article  CAS  Google Scholar 

  18. Chen J, Yang B, Lim YD, Duan W, Zhao Y, Tay BK, Yan X (2020) Ti3C2 (MXene) based field electron emitters. Nanotechnology 28:285701. https://doi.org/10.1088/1361-6528/ab8669

    Article  CAS  Google Scholar 

  19. Sadiq M, Pang L, Johnson M, Sathish V, Zhang Q, Wang D (2021) 2D nanomaterial, Ti3C2 MXene-based sensor to guide lung cancer therapy and management. Biosensors 2:40. https://doi.org/10.3390/bios11020040

    Article  CAS  Google Scholar 

  20. Cui Y, Zhang D, Shen K, Nie S, Liu M, Huang H, Deng F, Zhou N, Zhang X, Wei Y (2020) Biomimetic anchoring of Fe3O4 onto Ti3C2 MXene for highly efficient removal of organic dyes by Fenton reaction. J Environ Chem Eng 5:104369. https://doi.org/10.1016/j.jece.2020.104369

    Article  CAS  Google Scholar 

  21. Hu Y, Chu H, Ma X, Li Y, Zhao S, Li D (2021) Enhanced optical nonlinearities in Ti3C2 MXene decorated Fe3O4 nanocomposites for highly stable ultrafast pulse generation. Materials Today Physics 21:100482. https://doi.org/10.1016/j.mtphys.2021.100482

    Article  CAS  Google Scholar 

  22. Cui Y, Liu M, Huang H, Zhang D, Chen J, Mao L, Zhou N, Deng F, Zhang X, Wei Y (2020) A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceram Int 8:11593–11601. https://doi.org/10.1016/j.ceramint.2020.01.188

    Article  CAS  Google Scholar 

  23. Wang Y, Gao X, Zhang L, Wu X, Wang Q, Luo C, Wu G (2019) Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl Surf Sci 480:830–838. https://doi.org/10.1016/j.apsusc.2019.03.049

    Article  CAS  Google Scholar 

  24. Zhang L, Wang Z, Chen W, Yuan R, Zhan K, Zhu M, Yang J, Zhao B (2021) Fe3O4 nanoplate anchored on Ti3C2 Tx MXene with enhanced pseudocapacitive and electrocatalytic properties. Nanoscale 36:15343–15351. https://doi.org/10.1039/D1NR04383H

    Article  Google Scholar 

  25. Srinivasan B (2021) A guide to the Michaelis-Menten equation: steady state and beyond. FEBS J. https://doi.org/10.1111/febs.16124

    Article  Google Scholar 

  26. Lin L, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang H, Chen X (2018) Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed 18:4902–4906. https://doi.org/10.1002/anie.201712027

    Article  CAS  Google Scholar 

  27. Pappaterra M, Xu P, van der Meer W, Faria JA, Fernandez Rivas D (2021) Cavitation intensifying bags improve ultrasonic advanced oxidation with Pd/Al2O3 catalyst. Ultrason Sonochem 70:105324. https://doi.org/10.1016/j.ultsonch.2020.105324

    Article  CAS  Google Scholar 

  28. Travica N, Ried K, Sali A, Scholey A, Hudson I, Pipingas A (2017) Vitamin C status and cognitive function: a systematic review. Nutrients 9:960. https://doi.org/10.3390/nu9090960

    Article  CAS  Google Scholar 

  29. Zhu W, Jiang G, Xu L, Li B, Cai Q, Jiang H, Zhou X (2015) Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. Anal Chim Acta 886:37–47. https://doi.org/10.1016/j.aca.2015.05.036

    Article  CAS  Google Scholar 

  30. Fajgelj A (1999) Harmonized guidelines for the use of recovery information in analytical measurement. Accredit Qual Assur 12:A512. https://doi.org/10.1007/PL00010412

    Article  Google Scholar 

  31. Rockville (2001) Guidance for industry bioanalytical method validation, US Department of Health and Human Services, US Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER).

  32. Flohé L (2013) The fairytale of the GSSG/GSH redox potential. BBA-GEN Subjects 5:3139–3142. https://doi.org/10.1016/j.bbagen.2012.10.020

    Article  CAS  Google Scholar 

  33. Damy T, Kirsch M, Khouzami L, Caramelle P, Le Corvoisier P, Roudot-Thoraval F, Dubois-Rande JL, Hittinger L, Pavoine C, Pecker F (2009) Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS ONE 3:e4871. https://doi.org/10.1371/journal.pone.0004871

    Article  CAS  Google Scholar 

  34. Dong Y, Zhang H, Rahman ZU, Su L, Chen X, Hu J, Chen X (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 13:3969–3976. https://doi.org/10.1039/c2nr12109c

    Article  CAS  Google Scholar 

  35. Li Y, Kang Z, Kong L, Shi H, Zhang Y, Cui M, Yang D (2019) MXene-Ti3C2/CuS nanocomposites: enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mater Sci Eng, C 104:110000. https://doi.org/10.1016/j.msec.2019.110000

    Article  CAS  Google Scholar 

  36. Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G (2013) Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta 1118:83–86. https://doi.org/10.1016/j.aca.2012.11.056

    Article  CAS  Google Scholar 

  37. Li H, Wen Y, Zhu X, Wang J, Zhang L, Sun B (2020) Novel heterostructure of a MXene@NiFe-LDH nanohybrid with superior peroxidase-like activity for sensitive colorimetric detection of glutathione. Acs Sustain Chem Eng 1:520–526. https://doi.org/10.1021/acssuschemeng.9b05987

    Article  CAS  Google Scholar 

  38. Sun L, Ding Y, Jiang Y, Liu Q (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens Actuators, B Chem 239:848–856. https://doi.org/10.1016/j.snb.2016.08.094

    Article  CAS  Google Scholar 

  39. Gao Y, Wu K, Li H, Chen W, Fu M, Yue K, Zhu X, Liu Q (2018) Glutathione detection based on peroxidase-like activity of Co3O4–montmorillonite nanocomposites. Sens Actuators, B Chem 273:1635–1639. https://doi.org/10.1016/j.snb.2018.07.091

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 82104316) and Nanjing Medical Center for Clinical Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaijun Zhu or Weihong Ge.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1084 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, W., Zhou, L. et al. Sensitive colorimetric sensing of glutathione and H2O2 based on enhanced peroxidase mimetic activity of MXene@Fe3O4. Microchim Acta 189, 452 (2022). https://doi.org/10.1007/s00604-022-05556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05556-3

Keywords

Navigation