Skip to main content
Log in

High-bioactivity microfluidic immunosensing platform for electrochemiluminescence determination of CYFRA 21–1 with the introduction of Fe3O4@Cu@Cu2O

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Relying on the electrochemiluminescence (ECL) and microfluidic technology, an immunosensor chip with high bioactivity was designed for sensitive determination of cytokeratin 19 fragment 21–1 (CYFRA 21–1). The mesoporous nanomaterial Fe3O4@Cu@Cu2O as the co-reaction accelerator was used to catalyze the S2O82− to produce more SO4•− to achieve the amplification of the ECL signal. In fact, the generating of SO4•− could not only be done with the aid of the reversible cycles of Fe2+ and Fe3+ and Cu+ and Cu2+, but could be achieved also through the catalase-like function of Fe3O4. What is more, it has also been proved that Fe3O4@Cu@Cu2O exhibited better catalytic performance than single Fe3O4, Cu2O, and Cu@Cu2O, which supported its application in this system. In addition, a portable microfluidic immunosensor chip for CYFRA 21–1-sensitive determination was assembled, which showed high selectivity, sensitivity, and strong universality in clinical cancer screening and diagnosis. It should be noted that HWRGWVC (HWR) was introduced as the antibody fixator to improve the incubation and binding efficiency of the antibody, which increased the ECL intensity and improved the sensitivity of the immunosensor. This strategy provided a new idea for cancer identification and diagnosis in clinical medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao L, Yang H, Zheng X, Li J, Jian L, W, Feng, J. Kong, (2020) Dual signal amplification by polysaccharide and eATRP for ultrasensitive detection of CYFRA 21–1 DNA. Biosens Bioelectron 150:111895

    Article  CAS  Google Scholar 

  2. Abbas J, Hossain-Ali R, Mehdi S (2022) A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21–1 as a biomarker for detection of non-small cell lung cancer. Chemosphere 301:134636

    Article  Google Scholar 

  3. Liu D, Qian Y, Xu R, Zhang Y, Ren X, Ma H, Wei Q (2021) A dual-signal amplification photoelectrochemical immunosensor for ultrasensitive detection of CYFRA 21–1 based on the synergistic effect of SnS2/SnS/Bi2S3 and ZnCdS@NPC-ZnO. Sens Actuators, B 346:130456

  4. Zhao L, Song X, Ren X, Fan D, Wei Q, Wu D (2021) Rare self-luminous mixed-valence Eu-MOF with a self-enhanced characteristic as a near-infrared fluorescent ECL probe for nondestructive immunodetection. Anal Chem 93:8613–8621

    Article  CAS  Google Scholar 

  5. Cheng Q, Feng J, Wu T, Guo Y, Sun X, Ren X, Lee J, Liu L, Wei Q (2021) Hollow performances quenching label of Au NPs@CoSnO3 nanoboxes-based sandwich photoelectrochemical immunosensor for sensitive CYFRA 21–1 detection. Talanta 233:122552

    Article  CAS  Google Scholar 

  6. Jian L, Wang X, Hao L, Liu Y, Yang H, Zheng X, Feng W (2021) Electrochemiluminescence immunosensor for cytokeratin fragment antigen 21–1 detection using electrochemically mediated atom transfer radical polymerization. Microchim Acta 188:115

    Article  CAS  Google Scholar 

  7. Xue J, Yang L, Jia Y, Wang H, Zhang N, Ren X et al (2019) Electrochemiluminescence double quenching system based on novel emitter GdPO4: Eu with low-excited positive potential for ultrasensitive procalcitonin detection. ACS Sensors 4:2825–2831

    Article  CAS  Google Scholar 

  8. Song X, Shao X, Dai L, Fan D, Ren X, Sun X et al (2020) Triple amplification of 3,4,9,10-perylenetetracarboxylic acid by Co2+-based metal-organic frameworks and silver-cysteine and its potential application for ultrasensitive assay of procalcitonin. ACS Appl Mater Interfaces 12:9098–9106

    Article  CAS  Google Scholar 

  9. Jia Y, Yang L, Xue J, Ren X, Zhang N, Fan D et al (2019) Highly-branched Cu2O as well-ordered co-reaction accelerator for amplifying electrochemiluminescence response of gold nanoclusters and procalcitonin analysis based on protein bioactivity maintenance. Biosens Bioelectron 144:111676

    Article  CAS  Google Scholar 

  10. Yang L, Wu T, Du Y, Zhang N, Feng R, Ma H et al (2021) Pegylation Improved electrochemiluminescence supramolecular assembly of iridium(III) complexes in apoferritin for immunoassays using 2D/2D MXene/TiO2 hybrids as signal amplifiers. Anal Chem 93:16906–16914

    Article  CAS  Google Scholar 

  11. Damien T, Cedric L, Isabelle D, Philippe P, Cedric A, Jean-Baptiste S (2018) Engineering polymer MEMS using combined microfluidic pervaporation and micro-molding. Microsyst Nanoeng 4:15

    Article  Google Scholar 

  12. Verpoorte E, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953

    Article  CAS  Google Scholar 

  13. Ranjan G, Ishwar KP (2010) Microfluidic transport in magnetic MEMS and bioMEMS. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol 2:382–399

    Google Scholar 

  14. Pattanayak P, Singh SK, Gulati M et al (2021) Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluid 25:1–28

    Article  Google Scholar 

  15. Zhuang Q, Ning R, Ma Y, Lin J (2016) Recent developments in microfluidic chip for in vitro cell-based research. Chin J Anal Chem 44:522–531

    Article  CAS  Google Scholar 

  16. Zhao Y, Hu X, Hu S, Peng Y (2020) Applications of fiber-optic biochemical sensor in microfluidic chips: a review. Biosens Bioelectron 166:112447

    Article  CAS  Google Scholar 

  17. Cui P, Wang S (2019) Application of microfluidic chip technology in pharmaceutical analysis: a review. J Pharm Anal 9:238–247

    Article  Google Scholar 

  18. de Arquer F, Talapin D et al (2021) Semiconductor quantum dots: technological progress and future challenges. Science 373:640–655

    Google Scholar 

  19. Alexander LE, Louis EB (2021) Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15:6192–6210

    Article  Google Scholar 

  20. Liu Y, Yu J (2010) In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. J Colloid Interface Sci 351:1–9

    Article  CAS  Google Scholar 

  21. Yong K, Law W, Indrajit R, Zhu L, Huang H, Swihart MT et al (2011) Aqueous phase synthesis of CdTe quantum dots for biophotonics. J Biophotonics 4:9–20

    Article  CAS  Google Scholar 

  22. Kalsoom UE, Yi R, Qu J, Liu L et al (2021) Nonlinear optical properties of CdSe and CdTe core-shell quantum dots and their applications. Front Phys 9:612070

    Article  Google Scholar 

  23. Wang Z, Chen M, Shu J, Li Y et al (2016) One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J Alloys Compd 682:432–440

    Article  CAS  Google Scholar 

  24. Li J, Wang X, Liu W, Li X, Yang L, Ma H, et al (2021) Highly selective electrochemiluminescence aptasensor coupled with mesoporous Fe3O4@Cu@Cu2O as co-reaction accelerator for ATP assay based on target-triggered emitter release. Sens Actuators, B 346:130581

  25. Song X, Wu T, Luo C, Zhao L, Ren X, Zhang Y et al (2021) Peptide-based electrochemiluminescence biosensors using silver nanoclusters as signal probes and Pd-Cu2O hybrid nanoconcaves as coreactant promoters for immunoassays. Anal Chem 93:13045–13053

    Article  CAS  Google Scholar 

  26. Nishiyama K, Fukuyama M, Maeki M, Ishida A, Tani H, Hibara A, et al (2020) One-step non-competitive fluorescence polarization immunoassay based on a Fab fragment for C-reactive protein quantification. Sens Actuators, B 326:128982

  27. Urios P, Cittanova N (1990) Adaptation of fluorescence polarization immunoassay to the assay of macromolecules. Anal Biochem 185:308–312

    Article  CAS  Google Scholar 

  28. Ma M, Zhou Y, Yuan R, Chai Y et al (2015) New signal amplification strategy using semicarbazide as co-reaction accelerator for highly sensitive electrochemiluminescent aptasensor construction. Anal Chem 87:11389–11397

    Article  CAS  Google Scholar 

  29. Feng J, Dai L, Ren X, Ma H, Wang X, Fan D et al (2021) Self-powered cathodic photoelectrochemical aptasensor comprising a photocathode and a photoanode in microfluidic analysis systems. Anal Chem 93:7125–7132

    Article  CAS  Google Scholar 

  30. Cui X, Zhang S, Geng Y, Zhen J, Zhan J, Cao C, Ni S (2021) Synergistic catalysis by Fe3O4-biochar/peroxymonosulfate system for the removal of bisphenol a. Sep Purif Technol 276:119351

    Article  CAS  Google Scholar 

  31. Dang X, Sun M, Sinha A, Niu J, Zhao H (2019) Coupling O2 and K2S2O8 dual Co-reactant with Fe-N-C modified electrode for ultrasensitive electrochemiluminescence signal amplification. ChemistrySelect 4(5):1673–1680

    Article  CAS  Google Scholar 

  32. Xie C, Wang W, Yang Y, Jiang L, Chen Y, He J, Wang J (2020) Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method. Mol Catal 495:111134

    Article  CAS  Google Scholar 

  33. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  34. Zhou B, Wang H, Liu Z, Yang Y, Huang X, Lue Z et al (2011) Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route. Mater Chem Phys 126:847–852

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 51904114), Shandong Provincial Natural Science Foundation (No. ZR2020QB097), Jinan Scientific Research Leader Workshop Project (2019GXRC027), Special Foundation for Taishan Scholar Professorship of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmin Ma or Qin Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 949 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Song, X., Wang, W. et al. High-bioactivity microfluidic immunosensing platform for electrochemiluminescence determination of CYFRA 21–1 with the introduction of Fe3O4@Cu@Cu2O. Microchim Acta 189, 336 (2022). https://doi.org/10.1007/s00604-022-05436-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05436-w

Keywords

Navigation