Skip to main content
Log in

A sandwich-type electrochemical immunosensor for CYFRA 21–1 based on probe-confined in PtPd/polydopamine/hollow carbon spheres coupled with dendritic Au@Rh nanocrystals

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A signal-on sandwich-like electrochemical immunosensor was built for determination of cytokeratin 19 fragments 21–1 (CYFRA 21–1) in non-small cell lung cancer (NSCLC) by confining electroactive dye (e.g., methylene blue, MB) as a probe for amplifying signals. Specifically, core–shell gold@rhodium dendritic nanocrystals (Au@Rh DNCs) behaved as a substrate for primary antibody and accelerate interfacial electron transfer. Besides, hollow carbon spheres (HCSs) were subsequently modified with polydopamine (PDA) and PtPd nanoparticles for sequential integration of the secondary antibody and confinement of MB as a label, termed as MB/PtPd/PDA/HCSs for clarity. The built sensors showed a broad linear range (100 fg mL−1 ~ 100 ng mL−1) for detection of CYFRA 21–1 with an ultra-low detection limit (31.72 fg mL−1, S/N = 3), coupled with satisfactory performance in human serum samples. This work can be explored for assays of other proteins and provides some constructive insights for early and accurate diagnosis of NSCLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williamson J (2018) Atezolizumab in patients with metastatic NSCLC. Lancet Respir Med 6:584

    Article  PubMed  Google Scholar 

  2. Barak V, Goike H, Panaretakis KW, Einarsson R (2004) Clinical utility of cytokeratins as tumor markers. Clin Biochem 37:529–540

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Zhang Y, Hao L, Liu Y, Wang X, Yang H, Kong J (2021) Ultrasensitive label-free detection for lung cancer CYFRA 21–1 DNA based on ring-opening polymerization. Talanta 223:121730

    Article  CAS  PubMed  Google Scholar 

  4. Liu D, Qian Y, Xu R, Zhang Y, Ren X, Ma H, Wei Q (2021) A dual-signal amplification photoelectrochemical immunosensor for ultrasensitive detection of CYFRA 21–1 based on the synergistic effect of SnS2/SnS/Bi2S3 and ZnCdS@NPC-ZnO. Sens Actuators, B 346:130456

    Article  CAS  Google Scholar 

  5. Yang L, Jia Y, Wu D, Zhang Y, Ju H, Du Y, Ma H, Wei Q (2019) Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal Chem 91:14066–14073

    Article  CAS  PubMed  Google Scholar 

  6. Cohen L, Cui NW, Cai YM, Garden PM, Li X, Weitz DA, Walt DR (2020) Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano 14:9491–9501

    Article  CAS  PubMed  Google Scholar 

  7. Lou DD, Fan L, Cui Y, Zhu YF, Gu N, Zhang Y (2018) Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal Chem 90:6502–6508

    Article  CAS  PubMed  Google Scholar 

  8. Jian XX, Xu J, Wang YM, Zhao CX, Gao ZD, Song YY (2021) Deployment of MIL-88B(Fe)/TiO2 nanotube-supported Ti wires as reusable electrochemiluminescence microelectrodes for noninvasive sensing of H2O2 from single cancer cells. Anal Chem 93:11312–11320

    Article  CAS  PubMed  Google Scholar 

  9. Qu L, Yang L, Li Y, Ren X, Wang H, Fan D, Wang X, Wei Q, Ju H (2021) Dual-signaling electrochemical ratiometric method for competitive immunoassay of CYFRA21-1 based on urchin-like Fe3O4@PDA-Ag and Ni3Si2O5(OH)4-Au absorbed methylene blue nanotubes. ACS Appl Mater Interfaces 13:5795–5802

    Article  CAS  PubMed  Google Scholar 

  10. Miao J, Du K, Li X, Xu X, Dong X, Fang J, Cao W, Wei Q (2021) Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc-COOH-Au and UiO-66-TB complexes. Biosens Bioelectron 171:112713

    Article  CAS  PubMed  Google Scholar 

  11. Yang ZH, Ren S, Zhuo Y, Yuan R, Chai YQ (2017) Cu/Mn double-doped CeO2 nanocomposites as signal tags and signal amplifiers for sensitive electrochemical detection of procalcitonin. Anal Chem 89:13349–13356

    Article  CAS  PubMed  Google Scholar 

  12. Dong H, Cao L, Tan Z, Liu Q, Zhou J, Zhao P, Wang P, Li Y, Ma W, Dong Y (2020) A signal amplification strategy of CuPtRh CNB-embedded ammoniated Ti3C2 mxene for detecting cardiac troponin i by a sandwich-type electrochemical immunosensor. ACS Appl Bio Mater 3:377–384

    Article  CAS  PubMed  Google Scholar 

  13. Wang XY, Chen Y, Mei LP, Wang AJ, Yuan PX, Feng JJ (2020) Confining signal probe in porous PdPtCoNi@Pt-skin nanopolyhedra to construct a sandwich-type electrochemical immmunosensor for ultrasensitive detection of creatine kinase-MB. Sens Actuators, B 315:128088

    Article  CAS  Google Scholar 

  14. Ma E, Wang P, Yang Q, Yu H, Pei F, Li Y, Liu Q, Dong Y (2019) Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 142:111580

    Article  CAS  PubMed  Google Scholar 

  15. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuators, B 123:1195–1205

    Article  CAS  Google Scholar 

  16. Li Y-H, Zhou S, Jian X, Zhang X, Song Y-Y (2021) Asymmetrically coating Pt nanoparticles on magnetic silica nanospheres for target cell capture and therapy. Microchim Acta 188:361

    Article  CAS  Google Scholar 

  17. Qu K, Xu J, Xue Y, Guo J, Gao Z, Song Y-Y, Mei Y (2022) Near infrared light-driven photothermal effect on homochiral Au/TiO2 nanotube arrays for enantioselective desorption. Anal Chem 94:588–592

    Article  CAS  PubMed  Google Scholar 

  18. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  PubMed  Google Scholar 

  19. Zheng ZK, Tachikawa T, Majima T (2015) Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J Am Chem Soc 137:948–957

    Article  CAS  PubMed  Google Scholar 

  20. Son SE, Gupta PK, Hur W, Lee HB, Park Y, Park J, Kim SN, Seong GH (2021) Citric acid-functionalized rhodium–platinum nanoparticles as peroxidase mimics for determination of cholesterol. ACS Appl Nano Mater 4:8282–8291

    Article  CAS  Google Scholar 

  21. Zhang YP, Gao F, Wang CQ, Shiraishi Y, Du YK (2019) Engineering spiny PtFePd@PtFe/Pt core@multishell nanowires with enhanced performance for alcohol electrooxidation. ACS Appl Mater Interfaces 11:30880–30886

    Article  CAS  PubMed  Google Scholar 

  22. Cai S, Xiao W, Duan H, Liang X, Wang C, Yang R, Li Y (2018) Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. Nano Res 11:6304–6315

    Article  CAS  Google Scholar 

  23. Li F, Ding Y, Xiao X, Yin S, Hu M, Li S, Chen Y (2018) From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electrooxidation. J Mater Chem A 6:17164–17170

    Article  CAS  Google Scholar 

  24. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geng HY, Peng Y, Qu LT, Zhang HJ, Wu MH (2020) Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv Energy Mater 10:1903030

    Article  CAS  Google Scholar 

  26. Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed 50:6799–6802

    Article  CAS  Google Scholar 

  27. Didenko VV, Moore VC, Baskin DS, Smalley RE (2005) Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping. Nano Lett 5:1563–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang ZJ, Li MY, Zhang YJ, Yuan JH, Shen YF, Niu L, Ivaska A (2007) Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon 45:2111–2115

    Article  CAS  Google Scholar 

  29. Wang ZX, Zhao HL, Chen KC, Li HY, Lan MB (2021) Sandwich-type electrochemical aptasensor based on hollow mesoporous carbon spheres loaded with porous dendritic Pd@Pt nanoparticles as signal amplifier for ultrasensitive detection of cardiac troponin I. Anal Chim Acta 1188

  30. Fu YC, Li PH, Xie QJ, Xu XH, Lei LH, Chen C, Zou C, Deng WF, Yao SZ (2009) One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv Funct Mater 19:1784–1791

    Article  CAS  Google Scholar 

  31. Wang AJ, Liao QC, Feng JJ, Yan ZZ, Chen JR (2012) In situ synthesis of polydopamine-Ag hollow microspheres for hydrogen peroxide sensing. Electrochim Acta 61:31–35

    Article  CAS  Google Scholar 

  32. Manasa G, Ronald JM, Ashis KS, Ozma JDS, Dhason A (2017) Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Mater Sci Eng C 73:552–561

    Article  CAS  Google Scholar 

  33. Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C (2018) A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt methylene blue nanorod. Biosens Bioelectron 101:253–259

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Li G, Zhou Q, Pan D, Zhu M, Xiao R, Zhang Y, Wu G, Wan Y, Shen Y (2018) Boosted electrochemical immunosensing of genetically modified crop markers using nanobody and mesoporous carbon. ACS Sens 3:684–691

    Article  CAS  PubMed  Google Scholar 

  35. Han J, Zhang MF, Chen GJ, Zhang YQ, Wei Q, Zhuo Y, Xie G, Yuan R, Chen SP (2017) Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-β. J Mater Chem B 5:8330–8336

    Article  CAS  PubMed  Google Scholar 

  36. Fan Y, Shi SY, Ma JS, Guo YH (2019) A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron 135:1–7

    Article  CAS  PubMed  Google Scholar 

  37. Xue Q, Huang H, Zhu JY, Zhao Y, Li FM, Chen P, Chen Y (2020) Au@Rh core-shell nanowires for hydrazine electrooxidation. Appl Catal, B 278:119269

    Article  CAS  Google Scholar 

  38. Meng H-L, Lin S-Y, Feng J-J, Zhang L, Wang A-J (2022) Coordination regulated pyrolysis synthesis of ultrafine FeNi/(FeNi)9S8 nanoclusters/nitrogen, sulfur-codoped graphitic carbon nanosheets as efficient bifunctional oxygen electrocatalysts. J Colloid Interface Sci 610:573–582

    Article  CAS  PubMed  Google Scholar 

  39. Han Z, Feng J-J, Yao Y-Q, Wang Z-G, Zhang L, Wang A-J (2021) Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery. J Colloid Interface Sci 590:330–340

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Zhang H, Liu S, Dai Z, Wang P, Xu Y, Li X, Wang L, Wang H (2020) Engineering bunched RhTe nanochains for efficient methanol oxidation electrocatalysis. Chem Commun 56:13595–13598

    Article  CAS  Google Scholar 

  41. Deng K, Ren T, Xu Y, Liu S, Dai Z, Wang Z, Li X, Wang L, Wang H (2020) Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. J Mater Chem A 8:5595–5600

    Article  CAS  Google Scholar 

  42. Wang HJ, Li YH, Deng K, Li CJ, Xue HR, Wang ZQ, Li XN, Xu Y, Wang L (2019) Trimetallic PtPdNi-truncated octahedral nanocages with a well-defined mesoporous surface for enhanced oxygen reduction electrocatalysis. ACS Appl Mater Interfaces 11:4252–4257

    Article  PubMed  CAS  Google Scholar 

  43. Chen Z, Liu S, Huang J, Huang W, Chen L, Cui Y, Du Y, Fu R (2021) Molecular level design of nitrogen-doped well-defined microporous carbon spheres for selective adsorption and electrocatalysis. ACS Appl Mater Interfaces 13:12025–12032

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Ge XY, Cen SY, Wang AJ, Luo XL, Feng JJ (2020) Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly(bismarck brown Y) and dendritic AuPt nanoassemblies. Sens Actuators, B 311:127931

    Article  CAS  Google Scholar 

  45. Feng YG, He JW, Jiang LY, Chen DN, Wang AJ, Feng JJ (2022) Novel sandwich-typed electrochemical immunosensing of C-reactive protein using multiply twinned AuPtRh nanobead chains and nitrogen-rich porous carbon nanospheres decorated with Au nanoparticles. Sens Actuators, B 358:131518

    Article  CAS  Google Scholar 

  46. Lin Y, Jia J, Yang R, Chen D, Wang J, Luo F, Guo L, Qiu B, Lin Z (2019) Ratiometric immunosensor for GP73 detection based on the ratios of electrochemiluminescence and electrochemical signal using DNA tetrahedral nanostructure as the carrier of stable reference signal. Anal Chem 91:3717–3724

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Mei LP, Feng JJ, Yuan PX, Luo XL, Wang AJ (2019) Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I. Biosens Bioelectron 145:111638

    Article  CAS  PubMed  Google Scholar 

  48. Feng YG, Wang XY, Wang ZW, Wang AJ, Mei LP, Luo XL, Feng JJ (2021) A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin. Bioelectrochemistry 140:107753

    Article  CAS  PubMed  Google Scholar 

  49. Wang YG, Wang YL, Wu D, Ma HM, Zhang Y, Fan DW, Pang XH, Du B, Wei Q (2018) Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens Actuators, B 255:125–132

    Article  CAS  Google Scholar 

  50. Chen Z, Liang R, Guo X, Liang J, Deng Q, Li M, An T, Liu T, Wu Y (2017) Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles. Biosens Bioelectron 91:60–65

    Article  CAS  PubMed  Google Scholar 

  51. Kumar S, Sharma JG, Maji S, Malhotra BD (2016) Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens Bioelectron 78:497–504

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 32070397).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Bao or Jiu-Ju Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 648 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, YG., He, JW., Chen, DN. et al. A sandwich-type electrochemical immunosensor for CYFRA 21–1 based on probe-confined in PtPd/polydopamine/hollow carbon spheres coupled with dendritic Au@Rh nanocrystals. Microchim Acta 189, 271 (2022). https://doi.org/10.1007/s00604-022-05372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05372-9

Keywords

Navigation