Skip to main content

Advertisement

Log in

Triple-color fluorescence co-localization of PD-L1-overexpressing cancer exosomes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Programed cell death ligand 1 (PD-L1) is a protein biomarker overexpressed on exosomes derived from tumor cells. It plays an important role in tumor diagnosis, screening, evaluation of therapeutic efficacy, and prognosis. In this study, a facile method is presented to detect PD-L1-overexpressing cancer exosomes with high specificity and sensitivity. First, gold nanospheres (GNSs) were attached to the bottom of an eight-well chambered slide by electrostatic adsorption, forming the detection substrate. Then, Cy5-labeled CD63 aptamers (i.e., the capture probes) were modified on the GNSs by Au–S bond. After adding samples containing target exosomes which were stained by membrane dyes DiI in advance, FAM-labeled PD-L1 aptamers (i.e., the immunoprobes) were added to recognize PD-L1 on the target exosomes. By triple-color fluorescence co-localization (TFC) of the Cy5, DiI, and FAM channels, highly sensitive and reliable detection of the PD-L1-overexpressing exosomes was achieved in the concentration range 7.78 × 101 to 7.78 × 104 particles/mL with a detection limit down to 6 particles/mL. The advantages of the proposed detection method include the following; first, the detection substrate is easy to prepare and convenient to clean. Second, the TFC strategy can completely exclude nonspecific reaction sites and thus significantly improves the accuracy. Such a facile and reliable detection method holds a great potential in exosome-based cancer theranostics.

Graphical abstract

In this paper, we proposed a triple-color fluorescence co-localization (TFC) strategy to significantly improve the reliability of exosome detection and the detection substrate is easy to prepare and convenient to clean. In addition, the LOD is down to 6 particles/mL, which is quite low compared with other detection methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2:20389. https://doi.org/10.3402/jev.v2i0.20389

    Article  Google Scholar 

  2. Kim DK, Lee J, Simpson RJ, Lotvall J, Gho YS (2015) EVpedia: a community web resource for prokaryotic and eukaryotic extracellular vesicles research. Semin Cell Dev Biol 40:4–7. https://doi.org/10.1016/j.semcdb.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  3. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E (2018) Extracellular vesicle RNA: a universal mediator of microbial communication. Trends Microbiol 26(5):401–410. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  Google Scholar 

  5. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen EN, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:41–60. https://doi.org/10.3402/jev.v4.27066

    Article  Google Scholar 

  6. Vergauwen G, Dhondt B, Van Deun J, De Smedt E, Berx G, Timmerman E, Gevaert K, Miinalainen I, Cocquyt V, Braems G, Van den Broecke R, Denys H, De Wever O, Hendrix A (2017) Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep 7(1):2704. https://doi.org/10.1038/s41598-017-02599-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu M, Chen Z, Xie Q, Xiao B, Zhou G, Chen G, Bian Z (2021) One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens Bioelectron 171:112733. https://doi.org/10.1016/j.bios.2020.112733

    Article  CAS  PubMed  Google Scholar 

  8. Zhang P, Zhou X, Zeng Y (2019) Multiplexed immunophenotyping of circulating exosomes on nano-engineered ExoProfile chip towards early diagnosis of cancer. Chem Sci 10(21):5495–5504. https://doi.org/10.1039/C9SC00961B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee J, Kwon Y, Jung J, Shin H, Park J (2021) Immunostaining extracellular vesicles based on an aqueous two-phase system: for analysis of tetraspanins. ACS Appl Bio Mater 4(4):3294–3303. https://doi.org/10.1021/acsabm.0c01625

    Article  CAS  PubMed  Google Scholar 

  10. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727. https://doi.org/10.3390/cells8070727

    Article  CAS  PubMed Central  Google Scholar 

  11. Taylor DD, Gercel-Taylor C (2013) The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 4:142. https://doi.org/10.3389/fgene.2013.00142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suchorska WM, Lach MS (2016) The role of exosomes in tumor progression and metastasis (Review). Oncol Rep 35(3):1237–1244. https://doi.org/10.3892/or.2015.4507

    Article  CAS  PubMed  Google Scholar 

  13. An Y, Jin T, Zhu Y, Zhang F, He P (2019) An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens Bioelectron 142:111503. https://doi.org/10.1016/j.bios.2019.111503

    Article  CAS  PubMed  Google Scholar 

  14. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32(3–4):623–642. https://doi.org/10.1007/s10555-013-9441-9

    Article  CAS  PubMed  Google Scholar 

  15. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H (2018) New technologies for analysis of extracellular vesicles. Chem Rev 118(4):1917–1950. https://doi.org/10.1021/acs.chemrev.7b00534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Himes BT, Peterson TE, de Mooij T, Garcia LMC, Jung MY, Uhm S, Yan D, Tyson J, Jin-Lee HJ, Parney D, Abukhadra Y, Gustafson MP, Dietz AB, Johnson AJ, Dong H, Maus RL, Markovic S, Lucien F, Parney IF (2020) The role of extracellular vesicles and PD-L1 in glioblastoma-mediated immunosuppressive monocyte induction. Neuro Oncol 22(7):967–978. https://doi.org/10.1093/neuonc/noaa029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Zhong T, Tang R, Wu C, Xie Y, Liu F, Zhou Z (2020) PD-1 and PD-L1 expression in peripheral CD4/CD8+ T cells is restored in the partial remission phase in type 1 diabetes. J Clin Endocrinol Metab 105(6):1947–1956. https://doi.org/10.1210/clinem/dgaa130

    Article  Google Scholar 

  18. Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lasser C, Segaliny AI, McIntyre LL, Shelke GV, Hutchins E, Hamamoto A, Calle EN, Crescitelli R, Liao W, Pham V, Yin Y, Jayaraman J, Lakey JRT, Walsh CM, Van Keuren-Jensen K, Lotvall J, Zhao W (2019) Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 13(6):6670–6688. https://doi.org/10.1021/acsnano.9b01004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khanova, M.Yu.;Grigoryev, E.V (2019) Roles of PD-1 and PD-L1 receptors in the development of systemic inflammatory response and immunoadjuvant therapy, Patologiya Krovoobrashcheniya i Kardiokhirurgiya 23(3):76–83, https://doi.org/10.21688/1681-3472-2019-3-76-83.

  20. Carney RP, Hazari S, Rojalin T, Knudson A, Gao T, Tang Y, Liu R, Viitala T, Yliperttula M, Lam KS (2017) Targeting tumor-associated exosomes with integrin-binding peptides. Adv Biosyst 1(5):160038. https://doi.org/10.1002/adbi.201600038

    Article  CAS  Google Scholar 

  21. Lachal R (2019) Proceedings of Reanimation 2019, the French Intensive Care Society International Congress. Ann Intensive Care 9(Suppl 1):1–153. https://doi.org/10.1186/s13613-018-0474-7

    Article  Google Scholar 

  22. Liu C, Zeng X, An Z, Yang Y, Eisenbaum M, Gu X, Jornet JM, Dy GK, Reid ME, Gan Q, Wu Y (2018) Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sens 3(8):1471–1479. https://doi.org/10.1021/acssensors.8b00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin B, Tian T, Lu Y, Liu D, Huang M, Zhu L, Zhu Z, Song Y, Yang C (2021) Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew Chem Int Ed Engl 60(14):7582–7586. https://doi.org/10.1002/anie.202015628

    Article  CAS  PubMed  Google Scholar 

  24. Pang Y, Shi J, Yang X, Wang C, Sun Z, Xiao R (2020) Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosens Bioelectron 148:111800. https://doi.org/10.1016/j.bios.2019.111800

    Article  CAS  PubMed  Google Scholar 

  25. Yu J, Lin Y, Xiong X, Li K, Yao Z, Dong H, Jiang Z, Yu D, Yeung SJ, Zhang H (2019) Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis. Front Genet 10:202. https://doi.org/10.3389/fgene.2019.00202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li C, Li C, Zhi C, Liang W, Wang X, Chen X, Lv T, Shen Q, Song Y, Lin D, Liu H (2019) Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med 17(1):355. https://doi.org/10.1186/s12967-019-2101-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zong S, Liu Y, Yang K, Yang Z, Wang Z, Cui Y (2021) Eliminating nonspecific binding sites for highly reliable immunoassay via super-resolution multicolor fluorescence colocalization. Nanoscale 13(13):6624–6634. https://doi.org/10.1039/d0nr08103e

    Article  CAS  PubMed  Google Scholar 

  28. Ruan Q, Shao L, Shu Y, Wang J, Wu H (2014) Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv Opt Mater 2(1):65–73. https://doi.org/10.1002/adom.201300359

    Article  CAS  Google Scholar 

  29. Ivanusic D, Madela K, Laue M, Denner J (2015) Three-dimensional imaging of CD63 recruitment at the virological synapse: HIV-1. AIDS Res Hum Retroviruses 31(6):579–580. https://doi.org/10.1089/aid.2014.0252

    Article  PubMed  Google Scholar 

  30. Jung S, Kim MJ, Sellaththurai S, Kim S, Lee S, Lee J (2021) Generation of cd63-deficient zebrafish to analyze the role of cd63 in viral infection. Fish Shellfish Immunol 111:152–159. https://doi.org/10.1016/j.fsi.2021.01.016

    Article  CAS  PubMed  Google Scholar 

  31. Green GN, Fang H, Lin RJ, Newton G, Mather M, Georgiou CD, Gennis RB (1988) The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem 263(26):13138–13143. https://doi.org/10.1016/S0021-9258(18)37682-8

    Article  CAS  PubMed  Google Scholar 

  32. Liddell S, Smith JR, Zhang X, Hall H, Swan A, Bacardit J, Mobasheri A (2012) Proteomic and bioinformatic analysis of hydrophobic membrane protein extracts reveals the presence of several novel CD antigens, glucose transporters and voltage gated anion channels in articular chondrocytes. Osteoarthritis Cartilage 20:S261. https://doi.org/10.1016/j.joca.2012.02.438

    Article  Google Scholar 

  33. Sina AA, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJ, Trau M (2016) Real time and label free profiling of clinically relevant exosomes. Sci Rep 6:30460. https://doi.org/10.1038/srep30460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moura SL, Martin CG, Marti M, Pividori MI (2020) Multiplex detection and characterization of breast cancer exosomes by magneto-actuated immunoassay. Talanta 211:120657. https://doi.org/10.1016/j.talanta.2019.120657

    Article  CAS  PubMed  Google Scholar 

  35. Lima Moura S, Marti M, Pividori MI (2020) Matrix effect in the isolation of breast cancer-derived nanovesicles by immunomagnetic separation and electrochemical immunosensing-a comparative study. Sensors (Basel) 20(4):965. https://doi.org/10.3390/s20040965

    Article  CAS  Google Scholar 

  36. Wang Y, Luo D, Fang Y, Wu W, Wang Y, Xia Y, Wu F, Li C, Lan J, Chen J (2019) An aptasensor based on upconversion nanoparticles as LRET donors for the detection of exosomes. Sensors Actuators B: Chem 298:126900. https://doi.org/10.1016/j.snb.2019.126900

    Article  CAS  Google Scholar 

  37. Wang L, Zeng L, Wang Y, Chen T, Chen W, Chen G, Li C, Chen J (2021) Electrochemical aptasensor based on multidirectional hybridization chain reaction for detection of tumorous exosomes. Sens Actuators B Chem 332:129471. https://doi.org/10.1016/j.snb.2021.129471

    Article  CAS  Google Scholar 

  38. Sun Y, Jin H, Jiang X, Gui R (2020) Assembly of black phosphorus nanosheets and MOF to form functional hybrid thin-film for precise protein capture dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal Chem 92(3):2866–2875. https://doi.org/10.1021/acs.analchem.9b05583

    Article  CAS  PubMed  Google Scholar 

  39. Zhu X, Liu Z, Li J, Li Z, Si F, Yang H, Kong J (2021) Dual signal amplification based on polysaccharide-initiated ring-opening polymerization and click polymerization for exosomes detection. Talanta 233:122531. https://doi.org/10.1016/j.talanta.2021.122531

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Zhang K, Huang X, Qiao L, Liu B (2021) Mass spectrometry imaging of mass tag immunoassay enables the quantitative profiling of biomarkers from dozens of exosomes. Anal Chem 93(2):709–714. https://doi.org/10.1021/acs.analchem.0c03904

    Article  CAS  PubMed  Google Scholar 

  41. Xu L, Chopdat R, Li D, Al-Jamal KT (2020) Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens Bioelectron 169:112576. https://doi.org/10.1016/j.bios.2020.112576

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Liu W, Jin G (2021) Detection of exosomes using total internal reflected imaging ellipsometry. Biosensors (Basel) 11(5):164. https://doi.org/10.3390/bios11050164

    Article  CAS  Google Scholar 

  43. Li R, An Y, Jin T, Zhang F, He P (2021) Detection of MUC1 protein on tumor cells and their derived exosomes for breast cancer surveillance with an electrochemiluminescence aptasensor. J Electroanal Chem 882:115011. https://doi.org/10.1016/j.jelechem.2021.115011

    Article  CAS  Google Scholar 

  44. Liu L, Shen Y, Zhu X, Lv R, Li S, Zhang Z, Shi YG, Tan L (2018) ERa is a negative regulator of PD-L1 gene transcription in breast cancer. Biochem Biophys Res Commun 505(1):157–161. https://doi.org/10.1016/j.bbrc.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  45. Deng H, Kan A, Lyu N, Mu L, Han Y, Liu L, Zhang Y, Duan Y, Liao S, Li S, Xie Q, Gao T, Li Y, Zhang Z, Zhao M (2020) Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma. Liver Cancer 9(3):338–357. https://doi.org/10.1159/000505695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (NSFC) (62175027, 62175030), the Natural Science Foundation of Jiangsu Province (BK20201261), the Zhishan Scholars Program of Southeast University (2242021R41151) and the National Key Basic Research Program of China (2015CB352002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenfei Zong or Yiping Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1650 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Zhu, K., Chen, Z. et al. Triple-color fluorescence co-localization of PD-L1-overexpressing cancer exosomes. Microchim Acta 189, 182 (2022). https://doi.org/10.1007/s00604-022-05278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05278-6

Keywords

Navigation