Skip to main content
Log in

A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy32+-AuNPs complex (Ru-AuNPs), prepared by modifying the negatively charged surface of gold nanoparticles (AuNPs) with positively charged Rubpy32+ through electrostatic interactions and the graphene nanoplatelets-Nafion (GNP/Naf) at a ratio of 2:1. The nanocomposite was coated on the surface of the screen-printed electrode (SPCE) through the film-forming properties of Nafion. A layer of chitosan (CS) was coated onto this modified electrode, and later amine-terminated β-LG aptamers were covalently attached to the CS/Ru-AuNP/GNP/Naf via glutaraldehyde (GLUT) cross-linking. When β-LG was incubated with the aptasensor, a subsequent decrease in ECL intensity was recorded. Under the optimal conditions, the ECL intensity of the aptasensor changed linearly with the logarithmic concentration of β-LG, in the range 0.1 to 1000 pg/ml, and the detection limit was 0.02 pg/mL (3σ/m). The constructed aptasensor displayed simple and fast determination of β-LG with excellent reproducibility, stability, and high specificity. Additionally, the proposed ECL aptasensor displayed high recoveries (92.5–112%) and low coefficients of variation (1.6–7.8%), when β-LG fortified samples were analyzed. Integrating Ru-AuNPs/GNP/Naf nanocomposite in the ECL aptasensor paves the way towards a cost-effective and sensitive detection of the milk allergen β-LG.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tordesillas L, Berin MC, Sampson HA (2017) Immunology of food allergy. Immunity 47:32–50. https://doi.org/10.1016/j.immuni.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  2. Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT et al (2020) Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-L-lysine modified graphite electrodes. Sensors 20:2349. https://doi.org/10.3390/s20082349

    Article  CAS  PubMed Central  Google Scholar 

  3. Nehra M, Lettieri M, Dilbaghi N et al (2019) Nano-biosensing platforms for detection of cow’s milk allergens: an overview. Sensors 20:32. https://doi.org/10.3390/s20010032

    Article  CAS  PubMed Central  Google Scholar 

  4. He S, Li X, Wu Y et al (2018) Highly sensitive detection of bovine β-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J Agric Food Chem 66:11830–11838. https://doi.org/10.1021/acs.jafc.8b04086

    Article  CAS  PubMed  Google Scholar 

  5. Ivens KO, Baumert JL, Taylor SL (2016) Commercial milk enzyme-linked immunosorbent assay (ELISA) kit reactivities to purified milk proteins and milk-derived ingredients. J Food Sci 81:T1871–T1878. https://doi.org/10.1111/1750-3841.13357

    Article  CAS  PubMed  Google Scholar 

  6. Galan-Malo P, Pellicer S, Pérez MD et al (2019) Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chem 293:41–48. https://doi.org/10.1016/j.foodchem.2019.04.039

    Article  CAS  PubMed  Google Scholar 

  7. Xiao-yu K, Jing W, Yan-jun T, et al (2012) HPLC analysis of α-lactalbumin and β-lactoglobulin in bovine milk with C4 and C18 column. J Northeast Agric Univ (English Ed 19:76–82. https://doi.org/10.1016/S1006-8104(13)60026-4

  8. Czerwenka C, Műller L, Lindner W (2010) Detection of the adulteration of water buffalo milk and mozzarella with cow’s milk by liquid chromatography–mass spectrometry analysis of β-lactoglobulin variants. Food Chem 122:901–908. https://doi.org/10.1016/j.foodchem.2010.03.034

    Article  CAS  Google Scholar 

  9. Billakanti JM, Fee CJ, Lane FR et al (2010) Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. Int Dairy J 20:96–105. https://doi.org/10.1016/j.idairyj.2009.08.008

    Article  CAS  Google Scholar 

  10. Nowak-Wegrzyn A, Bloom KA, Sicherer SH et al (2008) Tolerance to extensively heated milk in children with cow’s milk allergy. J Allergy Clin Immunol 122:342-347.e2. https://doi.org/10.1016/j.jaci.2008.05.043

    Article  PubMed  Google Scholar 

  11. Matassan ND, Rizwan M, Mohd-Naim NF, et al (2018) Graphene nanoplatelets-based aptamer biochip for the detection of lipocalin-2. In: 2018 IEEE SENSORS. IEEE, 1–4

  12. Zhai Q, Li J, Wang E (2017) Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem 4:1639–1650. https://doi.org/10.1002/celc.201600898

    Article  CAS  Google Scholar 

  13. Li Y, Qi H, Gao Q, Zhang C (2011) Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosens Bioelectron 26:2733–2736. https://doi.org/10.1016/j.bios.2010.09.048

    Article  CAS  PubMed  Google Scholar 

  14. Bozorgzadeh S, Haghighi B, Gorton L (2015) Fabrication of a highly efficient solid state electrochemiluminescence sensor using Ru(bpy)32+ incorporated nanoZnO-MWCNTs-Nafion composite film. Electrochim Acta 164:211–217. https://doi.org/10.1016/j.electacta.2015.02.188

    Article  CAS  Google Scholar 

  15. Moretto LM, Kohls T, Badocco D et al (2010) Electrochemiluminescence of loaded in Nafion Langmuir-Blodgett films: role of the interfacial ultrathin film. J Electroanal Chem 640:35–41. https://doi.org/10.1016/j.jelechem.2009.12.029

    Article  CAS  Google Scholar 

  16. Bao L, Sun L, Zhang Z-L et al (2011) Energy-level-related response of cathodic electrogenerated-chemiluminescence of self-assembled CdSe/ZnS quantum dot films. J Phys Chem C 115:18822–18828. https://doi.org/10.1021/jp205419z

    Article  CAS  Google Scholar 

  17. Zou X, Shang F, Wang S (2017) Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction. Spectrochim Acta Part A Mol Biomol Spectrosc 173:843–848. https://doi.org/10.1016/j.saa.2016.10.037

    Article  CAS  Google Scholar 

  18. Chen C, Wei G, Yao X et al (2018) Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor. J Solid State Electrochem 22:2059–2066. https://doi.org/10.1007/s10008-018-3910-6

    Article  CAS  Google Scholar 

  19. Raju CV, Sornambigai M, Kumar SS (2020) Unraveling the reaction mechanism of co-reactant free in-situ cathodic solid state ECL of Ru(bpy)32+ molecule immobilized on Nafion coated nanoporous gold electrode. Electrochim Acta 358:136920. https://doi.org/10.1016/j.electacta.2020.136920

    Article  CAS  Google Scholar 

  20. Noor Azam NF, Mohd-Naim NF, Kurup CP, Ahmed MU (2020) Electrochemiluminescence immunosensor for tropomyosin using carbon nanohorns/Nafion/Fe3O4@Pd screen-printed electrodes. Microchim Acta 187:456. https://doi.org/10.1007/s00604-020-04440-2

    Article  CAS  Google Scholar 

  21. Wei H, Wang E (2011) Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review. Luminescence 26:77–85. https://doi.org/10.1002/bio.1279

    Article  CAS  PubMed  Google Scholar 

  22. Mao L, Yuan R, Chai Y et al (2010) Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor. Talanta 80:1692–1697. https://doi.org/10.1016/j.talanta.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Zhang J, Yan R et al (2014) Preparation of graphene nanoplatelet–titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens Bioelectron 51:76–81. https://doi.org/10.1016/j.bios.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  24. Noor Azam NF, Mohammad NA, Lim SA, Ahmed MU (2019) A label-free cardiac troponin T electrochemiluminescence immunosensor enhanced by graphene nanoplatelets. Anal Sci Int J Japan Soc Anal Chem 35:973–978. https://doi.org/10.2116/analsci.19P105

    Article  Google Scholar 

  25. Rizwan M, Mohd-Naim NF, Keasberry NA, Ahmed MU (2017) A highly sensitive and label-free electrochemiluminescence immunosensor for beta 2-microglobulin. Anal Methods 9:2570–2577. https://doi.org/10.1039/c7ay00263g

    Article  CAS  Google Scholar 

  26. Huang B, Yao C, Zhang Y, Lu X (2020) A novel label-free solid-state electrochemiluminescence sensor based on the resonance energy transfer from Ru(bpy)32+ to GO for DNA hybridization detection. Talanta 218:121126. https://doi.org/10.1016/j.talanta.2020.121126

    Article  CAS  PubMed  Google Scholar 

  27. Ke H, Zhang X, Guo W et al (2017) A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta 171:1–7. https://doi.org/10.1016/j.talanta.2017.04.045

    Article  CAS  PubMed  Google Scholar 

  28. Cao N, Zeng P, Zhao F, Zeng B (2019) Au@SiO2@RuDS nanocomposite based plasmon-enhanced electrochemiluminescence sensor for the highly sensitive detection of glutathione. Talanta 204:402–408. https://doi.org/10.1016/j.talanta.2019.06.030

    Article  CAS  PubMed  Google Scholar 

  29. Sun X, Du Y, Dong S, Wang E (2005) Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal Chem 77:8166–8169. https://doi.org/10.1021/ac051476+

    Article  CAS  PubMed  Google Scholar 

  30. Dong M, Li M, Qi H et al (2015) Electrogenerated chemiluminescence peptide-based biosensing method for cardiac troponin I using peptide-integrating Ru(bpy)3 2+-functionalized gold nanoparticles as nanoprobe. Gold Bull 48:21–29. https://doi.org/10.1007/s13404-015-0156-2

    Article  CAS  Google Scholar 

  31. Eissa S, Zourob M (2017) In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens Bioelectron 91:169–174. https://doi.org/10.1016/j.bios.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  32. Kurup CP, Mohd-Naim NF, Tlili C, Ahmed MU (2021) A highly sensitive label-free aptasensor based on gold nanourchins and carbon nanohorns for the detection of lipocalin-2 (LCN-2). Anal Sci 37:825–831. https://doi.org/10.2116/analsci.20P303

    Article  CAS  PubMed  Google Scholar 

  33. Tah A, Olmos Cordero JM, Weng X, Neethirajan S (2018) Aptamer-based biosensor for food allergen determination using graphene oxide/gold nanocomposite on a paper-assisted analytical device. bioRxiv 343368. https://doi.org/10.1101/343368

  34. Gao J, Chen Z, Mao L et al (2019) Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of ochratoxin A. Talanta 199:178–183. https://doi.org/10.1016/j.talanta.2019.02.044

    Article  CAS  PubMed  Google Scholar 

  35. Lettieri M, Hosu O, Adumitrachioaie A et al (2020) Beta-lactoglobulin electrochemical detection based with an innovative platform based on composite polymer. Electroanalysis 32:217–225. https://doi.org/10.1002/elan.201900318

    Article  CAS  Google Scholar 

  36. Shi M, Cen Y, Sohail M et al (2018) Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Microchim Acta 185:40. https://doi.org/10.1007/s00604-017-2569-5

    Article  CAS  Google Scholar 

  37. Clemente APB, Kuang H, Shabana AM et al (2019) Design of an aptamer-amphiphile for the detection of β-lactoglobulin on a liquid crystal interface. Bioconjug Chem 30:2763–2770. https://doi.org/10.1021/acs.bioconjchem.9b00412

    Article  CAS  PubMed  Google Scholar 

  38. Jia M, Jia B, Liao X et al (2022) A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere 287:131994. https://doi.org/10.1016/j.chemosphere.2021.131994

    Article  CAS  PubMed  Google Scholar 

  39. Gao H, Wang X, Li M et al (2017) Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of α-fetoprotein via target-induced quenching mechanism. Biosens Bioelectron 98:62–67. https://doi.org/10.1016/j.bios.2017.06.042

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez-Aldave S, Tarat A, McGettrick JD, Bertoncello P (2019) Voltammetric detection of caffeine in beverages at Nafion/graphite nanoplatelets layer-by-layer films. Nanomaterials 9:221. https://doi.org/10.3390/nano9020221

    Article  CAS  PubMed Central  Google Scholar 

  41. Suroviec AH (2012) Determining surface coverage of self-assembled monolayers on gold electrodes. Chem Educ 17(3):83–85. https://doi.org/10.1333/s00897122424a

    Article  CAS  Google Scholar 

  42. Qi H, Li M, Dong M et al (2014) Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide. Anal Chem 86:1372–1379. https://doi.org/10.1021/ac402991r

    Article  CAS  PubMed  Google Scholar 

  43. Guo Z, Dong S (2004) Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal Chem 76:2683–2688. https://doi.org/10.1021/ac035276e

    Article  CAS  PubMed  Google Scholar 

  44. Eissa S, Tlili C, Hocine LL, Zourob M (2012) Biosensors and Bioelectronics Electrochemical immunosensor for the milk allergen b-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens Bioelectron 38:308–313. https://doi.org/10.1016/j.bios.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  45. Ruiz-Valdepeñas Montiel V, Campuzano S, Conzuelo F et al (2015) Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 131:156–162. https://doi.org/10.1016/j.talanta.2014.07.076

    Article  CAS  PubMed  Google Scholar 

  46. He S, Li X, Gao J et al (2018) Development of a H 2 O 2 -sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine β -lactoglobulin by monoclonal antibody. J Sci Food Agric 98:519–526. https://doi.org/10.1002/jsfa.8489

    Article  CAS  PubMed  Google Scholar 

  47. Vasilescu A, Nunes G, Hayat A et al (2016) Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors 16:1863. https://doi.org/10.3390/s16111863

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was partly supported by the Universiti Brunei Darussalam’s grant UBD/RSCH/1.4/FICBF(b)/2018/010.

Author information

Authors and Affiliations

Authors

Contributions

Chitra Padmakumari Kurup: formal analysis, investigation, data curation, writing–original draft, visualization. Noor Faizah Mohd-Naim: writing review and editing, data curation, co-supervision. Minhaz Uddin Ahmed: conceptualization, methodology, validation, resources, data curation, writing–review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Minhaz Uddin Ahmed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 227 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurup, C.P., Mohd-Naim, N.F. & Ahmed, M.U. A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor. Microchim Acta 189, 165 (2022). https://doi.org/10.1007/s00604-022-05275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05275-9

Keywords

Navigation