Skip to main content
Log in

Rapid and non-invasive surface-enhanced Raman spectroscopy (SERS) detection of chlorpyrifos in fruits using disposable paper-based substrates charged with gold nanoparticle/halloysite nanotube composites

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chlorpyrifos is one of the most widely used organophosphate insecticides in agricultural production. Nevertheless, the residues of chlorpyrifos in agricultural by-product seriously threaten human health. Thus, the ultrasensitive detection of chlorpyrifos residues in agri-food products is of great demand. Herein, an AuNP/HNT-assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues. The AuNP/HNT paper substrate exhibited high SERS activity, good reproducibility, and long-term stability, which was successfully used for quantitative detection of chlorpyrifos; the detection limit reached 7.9 × 10−9 M. For spiked apple samples the calculated recovery was 87.9% with a RSD value of 6.1%. The excellent detection ability of AuNP/HNT paper-based SERS substrate indicated that it will play an important role in pesticide detection in the future.

Graphical abstract

AuNP/HNT assembled disposable paper SERS substrate was prepared by an electrostatic self-assembly method to detect chlorpyrifos residues in fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372–380. https://doi.org/10.1016/j.jenvman2012.10.032

    Article  CAS  PubMed  Google Scholar 

  2. Foong SY, Ma NL, Lam SS, Peng WX, Low F, Lee BHK, Alstrup AKO, Sonne C (2020) A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: prevalence, remediation and actions needed. J Hazard Mater 400:123006. https://doi.org/10.1016/j.jhazmat.2020.123006

    Article  CAS  PubMed  Google Scholar 

  3. Zhao LL, Tang G, Xiong C, Han SS, Yang CP, He K, Liu Q, Luo J, Luo W, Wang Y, Li ZQ, Yang S (2021) Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). Environ Pollut 282:117010. https://doi.org/10.1016/j.envpol.2021.117010

    Article  CAS  PubMed  Google Scholar 

  4. Lee WJ, Alavania MCR, Hoppin JA, Rusiecki JA, Kamel F, Blair A, Sandler DP (2007) Mortality among pesticide applicators exposed to chlorpyrifos in the agricultural health study. Environ Health Perspect 115:528–534. https://doi.org/10.1289/ehp.9662

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lasagna M, Hielpos MS, Ventura C, Mardirosian MN, Martin G, Miret N, Randi A, Nunez M, Cocca C (2020) Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. Ecotoxicol Environ Saf 205:111312. https://doi.org/10.1016/j.ecoenv.2020.111312

    Article  CAS  PubMed  Google Scholar 

  6. Cao Y, Tang H, Chen D, Li L (2015) A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC-MS/MS. J Chromatogr B 998:72–79. https://doi.org/10.1016/j.jchromb.2015.06.013

    Article  CAS  Google Scholar 

  7. Berijani S, Assadi Y, Anbia M, Hosseini MR, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas ghromatography-flame photometric detection-very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123:1–9. https://doi.org/10.1016/j.chroma.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Salm P, Taylor PJ, Roberts D, de Silva J (2009) Liquid chromatography-tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. J Chromatogr B 877:568–574. https://doi.org/10.1016/j.jchromb.2008.12.066

    Article  CAS  Google Scholar 

  9. Yao L, Ouyang L, Lv JP, Dai P, Zhu LH (2021) Rapid and sensitive SERS detection of food contaminants by using nano-Ag aggregates with controllable hydrophobicity. Microchem J 166:106221. https://doi.org/10.1016/j.microc.2021.106221

    Article  CAS  Google Scholar 

  10. Xu D, Duan LF, Jia WL, Yang GH, Gu YQ (2021) Fabrication of Ag@Fe2O3 hybrid materials as ultrasensitive SERS substrates for the detection of organic dyes and bilirubin in human blood. Microchem J 161:105799. https://doi.org/10.1016/j.microc.2020.105799

    Article  CAS  Google Scholar 

  11. Feng SL, Hu YX, Ma LY, Lu XN (2017) Development of molecularly imprinted polymers-surface-enhanced raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice. Sens Actuators B Chem 241:750–757. https://doi.org/10.1016/j.snb.2016.10.131

    Article  CAS  Google Scholar 

  12. Xu Q, Guo XY, Xu L, Ying Y, Wu YP, Wen Y, Yang HF (2017) Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens Actuators B Chem 241:1008–1013. https://doi.org/10.1016/j.snb.2016.11.021

    Article  CAS  Google Scholar 

  13. Zhu XY, Ai SR, Xiong AH, Du J, Huang JS, Liu P, Hu X, Wu RM (2020) Detection of chlorpyrifos residues in green tea using SERS and rapid pretreatment method. Spectrosc Spect Anal 40:550–555. https://doi.org/10.3964/j.issn.1000-0593(2020)02-0550-06

    Article  CAS  Google Scholar 

  14. Song YC, Xu TL, Xu LP, Zhang XJ (2018) Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale 10:20990–20994. https://doi.org/10.1039/C8NR07348A

    Article  CAS  PubMed  Google Scholar 

  15. He XC, Yang SJ, Xu TL, Song YC, Zhang XJ (2020) Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosens Bioelectron 152:112013. https://doi.org/10.1016/j.bios.2020.112013

    Article  CAS  PubMed  Google Scholar 

  16. Xu TL, Luo Y, Liu CH, Zhang XJ, Wang ST (2020) Integrated ultrasonic aggregation-induced enrichment with Raman enhancement for ultrasensitive and rapid biosensing. Anal Chem 92:7816–7821. https://doi.org/10.1021/acs.analchem.0c01011

    Article  CAS  PubMed  Google Scholar 

  17. Amarandei G, O’Dwyer C, Arshak A, Corcoran D (2013) Fractal patterning of nanoparticles on polymer films and their SERS capabilities. ACS Appl Mater Interfaces 5:8655–8662. https://doi.org/10.1021/am402285e

    Article  CAS  PubMed  Google Scholar 

  18. Cerf A, Molnar G, Vieu C (2009) Novel approach for the assembly of highly efficient SERS substrates. ACS Appl Mater Interfaces 1:2544–2550. https://doi.org/10.1021/am900476d

    Article  CAS  PubMed  Google Scholar 

  19. Yao X, Jiang S, Luo SS, Liu BW, Huang TX, Hu S, Zhu JF, Wang X, Ren B (2020) Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl Mater Interfaces 12:36505–36512. https://doi.org/10.1021/acsami.0c09357

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Huang M, Kong L (2020) Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Appl Surf Sci 533:147454. https://doi.org/10.1016/j.apsusc.2020.147454

    Article  CAS  Google Scholar 

  21. Yang LL, Peng YS, Yang Y, Liu JJ, Huang HL, Yu BH, Zhao JM, Lu YL, Huang ZR, Li ZY, Lombardi JR (2019) A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Advanced Sci 6:1900310. https://doi.org/10.1002/advs.201900310

    Article  CAS  Google Scholar 

  22. Jin X, Zhu QY, Feng L, Li X, Zhu HY, Miao HY, Zeng ZF, Wang YD, Li Y, Wang LK, Liu XF, Shi G (2021) Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes. ACS Appl Mater Interfaces 13:11535–11542. https://doi.org/10.1021/acsami.1c00702

    Article  CAS  PubMed  Google Scholar 

  23. Bekana D, Liu R, Amde M, Liu JF (2017) Use of polycrystalline ice for assembly of large area Au nanoparticle superstructures as SERS substrates. ACS Appl Mater Interfaces 9:513–520. https://doi.org/10.1021/acsami.6b15378

    Article  CAS  PubMed  Google Scholar 

  24. Chen HY, Lin MH, Wang CY, Chang YM, Gwo S (2015) Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J Am Chem Soc 137:13698–13705. https://doi.org/10.1021/jacs.5b09111

    Article  CAS  PubMed  Google Scholar 

  25. Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D (2012) Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH). J Phys Chem C 116:18230–18235. https://doi.org/10.1021/jp3038945

    Article  CAS  Google Scholar 

  26. Lvov Y, Abdullayev E (2013) Functional polymer-clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719. https://doi.org/10.1016/j.progpolymsci.2013.05.009

    Article  CAS  Google Scholar 

  27. Abdullayev E, Joshi A, Wei WB, Zhao YF, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226. https://doi.org/10.1021/nn302328x

    Article  CAS  PubMed  Google Scholar 

  28. Liu MX, Guo BC, Du ML, Chen F, Jia DM (2009) Halloysite nanotubes as a novel beta-nucleating agent for isotactic polypropylene. Polym 50:3022–3030. https://doi.org/10.1016/j.polymer.2009.04.052

    Article  CAS  Google Scholar 

  29. Gong Y, Yuan W, Guo X, Zhang Q, Zhang P, Ding CF (2021) Fluorescent detection of microRNA-21 in MCF-7 cells based on multifunctional gold nanorods and the integration of chemotherapy and phototherapy. Microchim Acta 188:253. https://doi.org/10.1007/s00604-021-04917-8

    Article  CAS  Google Scholar 

  30. Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16:2224–2239. https://doi.org/10.1039/c3cp53560f

    Article  CAS  PubMed  Google Scholar 

  31. Huang YJ, Ferhan AR, Cho SJ, Lee H, Kim DH (2015) Gold nanowire bundles grown radially outward from silicon micro pillars. ACS Appl Mater Interfaces 7:17582–17586. https://doi.org/10.1021/acsami.5b05161

    Article  CAS  PubMed  Google Scholar 

  32. Abbas A, Brimer A, Slocik JM, Tian LM, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85:3977–3983. https://doi.org/10.1021/ac303567g

    Article  CAS  PubMed  Google Scholar 

  33. Hu SW, Qiao S, Pan JB, Kang B, Xu JJ, Chen HY (2018) A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta 179:9–14. https://doi.org/10.1016/j.talanta.2017.10.038

    Article  CAS  PubMed  Google Scholar 

  34. Xu KC, Zhou R, Takei K, Hong MH (2019) Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci 6:1900925. https://doi.org/10.1002/advs.201900925

    Article  CAS  Google Scholar 

  35. Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Sci 347:1255957. https://doi.org/10.1126/science.1255957

    Article  CAS  Google Scholar 

  36. Miao Y, Rong M, Li M, He H, Zhang L, Zhang SS, Liu C, Zhu Y, Deng YL, Chen PP, Zeng JY, Zhong R, Mei SR, Miao XP, Zeng Q (2021) Serum concentrations of organochlorine pesticides, biomarkers of oxidative stress, and risk of breast cancer. Environ Pollut 286:117386. https://doi.org/10.1016/j.envpol.2021.117386

    Article  CAS  PubMed  Google Scholar 

  37. Teixeira RA, Dinali LAF, de Oliveira HL, da Silva ATM, Borges KB (2021) Efficient and selective extraction of azamethiphos and chlorpyrifos residues from mineral water and grape samples using magnetic mesoporous molecularly imprinted polymer. Food Chem 361:130116. https://doi.org/10.1016/j.foodchem.2021.130116

    Article  CAS  Google Scholar 

  38. He Y, Xiao SP, Dong T, Nie PC (2019) Gold nanoparticles with different particle sizes for the quantitative determination of chlorpyrifos residues in soil by SERS. Int J Mol Sci 20:2817. https://doi.org/10.3390/ijms20112817

    Article  CAS  PubMed Central  Google Scholar 

  39. Darko G, Akoto O (2008) Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi. Ghana Food Chem Toxicol 46:3703–3706. https://doi.org/10.1016/j.fct.2008.09.049

    Article  CAS  PubMed  Google Scholar 

  40. Chavarri MJ, Herrera A, Arino A (2004) Pesticide residues in field-sprayed and processed fruits and vegetables. J Agric Food Chem 84:1253–1259. https://doi.org/10.1002/jsfa.1791

    Article  CAS  Google Scholar 

  41. Tay BYP, Wai WH (2020) A gas chromatography–mass spectrometry method for the detection of chlorpyrifos contamination in palm-based fatty acids. J Am Chem Soc 98:881–887. https://doi.org/10.1002/aocs.12512

    Article  CAS  Google Scholar 

  42. Moura ACM, Lago IN, Cardoso CF, Nascimento AR, Pereira I, Vaz BG (2020) Rapid monitoring of pesticides in tomatoes (Solanum lycopersicum L.) during pre-harvest intervals by paper spray ionization mass spectrometry. Food Chem 310:125938. https://doi.org/10.1016/j.foodchem.2019.125938

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 22001099), the Xuzhou Technology & Science Foundation (KC20165), the Natural Science Foundation of Shanghai (18ZR1408100), and the Scientific Research Program of Fire Rescue Bureau of MEM (2019XFGG04).

Author information

Authors and Affiliations

Authors

Contributions

Xinxi Zhang: investigation, formal analysis, writing — original draft. Lulu Chen: investigation, formal analysis, writing — original draft. Xuejiao Fang: investigation, formal analysis, writing — original draft. Yunsheng Shang: investigation, formal analysis. Haixin Gu: writing — review and editing, funding acquisition. Wenlin Jia: writing — review and editing, funding acquisition. Guohai Yang: methodology. Yingqiu Gu: writing — review and editing, funding acquisition. Lulu Qu: resources.

Corresponding authors

Correspondence to Haixin Gu, Wenlin Jia or Yingqiu Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, L., Fang, X. et al. Rapid and non-invasive surface-enhanced Raman spectroscopy (SERS) detection of chlorpyrifos in fruits using disposable paper-based substrates charged with gold nanoparticle/halloysite nanotube composites. Microchim Acta 189, 197 (2022). https://doi.org/10.1007/s00604-022-05261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05261-1

Keywords

Navigation