Skip to main content
Log in

A Simple and Sensitive Method for Detecting Thiamethoxam Residues Using β-CD-AgNP

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new surface-enhanced Raman spectroscopy (SERS) method for the determination of thiamethoxam (TBZ) on the surface of fruit was developed using β-cyclodextrin (β-CD)-coated AgNPs as substrates. When using it to detect 10−8 M methylene blue, the characteristic peak was still clearly visible. In addition, β-CD-AgNP substrates can be used for SERS detection of low concentration TBZ on apple surfaces, which can detect TBZ as low as 7.3 × 10−8 M. The results indicated that this substrate based on silver nanoparticles has high sensitivity for rapid detection of pesticide residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Nowicka A, Czaplicka M, Kowalska A, Szymborski T, Kamińska A (2019) Flexible PET/ITO/Ag SERS platform for label-free detection of pesticides. Biosensors 9. https://doi.org/10.3390/bios9030111

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang T, Zhang Z, Zhao B, Hou R, Kinchla A, Clark JM, He L (2016) Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping. Anal Chem 88. https://doi.org/10.1021/acs.analchem.6b00320

    Article  PubMed  PubMed Central  Google Scholar 

  3. Choi J, Hahm E, Park K, Jeong D, Rho WY, Kim J, Jeong D, Lee YS, Jhang S, Chung H, Cho E, Yu JH, Jun BH, Jung S (2017) SERS-based pesticide detection by using nano finger sensors. Nanomaterials 7. https://doi.org/10.1088/0957-4484/26/1/015502

    Article  PubMed  PubMed Central  Google Scholar 

  4. Simone H, Sharon P, LJuergen G, Richard EC (2015) The use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms. Ecotoxicology 24. https://doi.org/10.1007/s10646-015-1420-1

    Article  Google Scholar 

  5. Fu G, Sun DW, Pu H, Wei Q (2019) Fabrication of gold nanorods for SERS detection. Talanta 195. https://doi.org/10.1016/j.talanta.2018.11.114

    Article  PubMed  Google Scholar 

  6. Timofeeva I, Shishov A, Kanashina D, Dzema D, Bulatov A (2017) On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 167. https://doi.org/10.1016/j.talanta.2017.01.008

    Article  PubMed  Google Scholar 

  7. Lee SH, Kwak SY, Sarker A, Moon JK, Kim JE (2022) Optimization of a multi-residue analytical method during determination of pesticides in meat products by GC-MS/MS. Foods 11. https://doi.org/10.3390/foods11192930

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ramadan G, Al Jabir M, Alabdulmalik N, Mohammed A (2016) Validation of a method for the determination of 120 pesticide residues in apples and cucumbers by LC-MS/MS. Drug Test Anal 8:5. https://doi.org/10.1002/dta.2008

    Article  CAS  Google Scholar 

  9. Jallow M, Awadh D, Albaho M, Devi V, Ahmad N (2017) Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int J Env Res Pub He 14:8. https://doi.org/10.3390/ijerph14080833

    Article  CAS  Google Scholar 

  10. Zhang C, You T, Yang N, Gao Y, Jiang L, Yin P (2019) Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem 287:363–368. https://doi.org/10.1016/j.foodchem.2019.02.094

    Article  CAS  PubMed  Google Scholar 

  11. Pan Y, Liu X, Liu J, Wang J, Liu J, Gao Y, Ma N (2022) Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. J Dairy Sci 105. https://doi.org/10.3168/jds.2021-21213

    Article  PubMed  Google Scholar 

  12. Phuong NTT, Nguyen TA, Huong VT, Tho LH, Anh DT, Ta HKT, Huy TH, Trinh KTL, Tran NHT (2022) Sensors for detection of the synthetic dye rhodamine in environmental monitoring based on SERS. Micromachines 13. https://doi.org/10.3390/mi13111840

    Article  PubMed  PubMed Central  Google Scholar 

  13. Strozyk MS (2017) Jimenez de Aberasturi D, Liz-Marzán L M. Composite polymer colloids for SERS-based applications Chem Rec 18:7–8. https://doi.org/10.1002/tcr.201700082

    Article  CAS  Google Scholar 

  14. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode J Electroanal Chem 84(1):1–20. https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  15. Centeno SP, Arenas JF, Soto J, Otero JC (2006) Selection rules of the charge transfer mechanism of surface-enhanced Raman scattering: the effect of the adsorption on the relative intensities of pyrimidine bonded to silver nanoclusters. J Phys Chem B 110:14916–14922. https://doi.org/10.1021/jp0621373

    Article  CAS  PubMed  Google Scholar 

  16. Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650. https://doi.org/10.1016/j.carbpol.2016.10.031

    Article  CAS  PubMed  Google Scholar 

  17. Pham UT, Phan QHT, Nguyen LP, Luu PD, Doan TD, Trinh H, Dinh CT, Nguyen TV, Tran TQ, Le DX, Pham TN, Le TD, Nguyen DT (2022) Rapid quantitative determination of multiple pesticide residues in mango fruits by surface-enhanced Raman spectroscopy. Processes 10. https://doi.org/10.3390/pr10030442

  18. Zhang QM, Li D, Cao XK, Hx G, Deng W (2019) Self-assembled microgels arrays for electrostatic concentration and surface-enhanced Raman spectroscopy detection of charged pesticides in seawater. Anal Chem 91(17):11192–11199. https://doi.org/10.1021/acs.analchem.9b02106

    Article  CAS  PubMed  Google Scholar 

  19. Ouyang L, Zhu LH, Ruan YF, Tang HQ (2015) Preparation of a native b-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced Raman scattering scaffold for antibiotics identification. J Mater Chem C Mater Opt Electron Device 3–29. https://doi.org/10.1039/x0xx00000x

  20. Ouyang L, Jiang JY, Wang N, Zhu LH, Tang HQ (2017) Rapid surface enhanced Raman scattering (SERS) detection of sibutramine hydrochloride in pharmaceutical capsules with a β-cyclodextrin-Ag/polyvivnyl alcohol hydrogel substrate. Sensors 17(7):1601. https://doi.org/10.3390/s17071601

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pande S, Ghosh SK, Praharaj S (2007) Synthesis of normal and inverted gold-silver core-shell architectures in beta-cyclodextrin and their applications in SERS. J Phys Chem C:  Nanomater Interfaces  111(29). https://doi.org/10.1021/jp0702393

  22. Roschi E, Gellini C, Ricci M, Sanchez-Cortes S, Focardi C, Neri B (2021) Surface-enhanced Raman spectroscopy for bisphenols detection: toward a better understanding of the analyte-nanosystem interactions. Nanomaterials 4. https://doi.org/10.3390/nano11040881

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao Y, Grasso MF, Sorensen HH, Zhang P (2019) Ratiometric SERS detection of polycyclic aromatic hydrocarbons assisted by β-cyclodextrin-modified gold nanoparticles. Microchimica Acta 186(6). https://doi.org/10.1007/s00604-019-3511-9

    Article  PubMed  Google Scholar 

  24. Zhang FM, Wang YT, Yuan Y, Li X, Yang B, Ren ZX, Zhou YY, Song DQ, Bi SY (2022) Silver nanoparticles modified by β-cyclodextrin and γ-alumina as substrate for quantitative SERS detection of netilmicin. Talanta 253. https://doi.org/10.1016/j.talanta.2022.124054

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma PY, Liang FH, Wang D, Yang QQ, Cao BC, Song DQ, Gao DJ, Wang XH (2014) Selective determination of o-phenylenediamine by surface-enhanced Raman spectroscopy using silver nanoparticles decorated with α-cyclodextrin. Microchim Acta 182:1–2. https://doi.org/10.1016/j.apsusc.2021.149544

    Article  CAS  Google Scholar 

  26. Song Y, Zhang Y, Huang Y (2024) Rapid determination of thiram residues in fruit juice by surface-enhanced Raman scattering coupled with a Gold@Silver nanoparticle-graphene oxide composite. Anal Lett. https://doi.org/10.1080/00032719.2019.1691220

    Article  Google Scholar 

  27. Santhoshkumar S, Murugan E (2021) Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg2+ ions in aqueous solution. Appl Surf Sci 553. https://doi.org/10.1016/j.apsusc.2020.145786

    Article  Google Scholar 

  28. Oliveira MJS, Rubira RJG, Furini LN, Batagin-Neto A, Constantino CJL (2020) SERS-based flavonoid detection using ethylenediamine-β-cyclodextrin as a capturing ligand. Appl Surf Sci. https://doi.org/10.3390/nano7010008

    Article  Google Scholar 

  29. Chinh VD, Van NT, Binh PT (2023) SERS of thiabendazole on silver-gold bimetallic nanoparticles: adsorption mechanism. Chem Phys Lett 829. https://doi.org/10.1016/j.cplett.2023.140760

    Article  Google Scholar 

  30. Sitjar J, Liao JD, Lee H, Liu BH, Fu WE (2019) SERS-active substrate with collective amplification design for trace analysis of pesticides. Nanomaterials 9. https://doi.org/10.3390/nano9050664

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang JL, Zou SM, Ma LW, Wang SF, Liao JS, Zhang ZJ (2018) Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver. Nanorods ACS Appl Mater Interfaces 10:9129–9135. https://doi.org/10.1021/acsami.7b18039

    Article  CAS  PubMed  Google Scholar 

  32. Zong CH, Ge MY, Pan H, Wang J, Nie XM, Zhang QQ, Zhao WF, Liu XJ, Yu Y (2019) In situ synthesis of low-cost and large-scale flexible metal nanoparticle–polymer composite films as highly sensitive SERS substrates for surface trace analysis. RSC Adv 9:2857–2864. https://doi.org/10.1039/C8RA08818G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by special project of guiding local scientific and technological development by the central government of Liaoning Province (Grant No. 2022JH6/100100033), the National Natural Science Foundation of China (Grant No. 11974152), the Liaoning Provincial Department of Education Project (Grant No. LQN202009), the Science Program of Liaoning Provincial Department of Education (LJKZ0097), the intercollegiate cooperation project of colleges and universities of Liaoning Provincial Department of Education, the Liaoning Revitalization Talents Program of China (XLYC2002097), and the Key Projects of Liaoning Provincial Education Department (JYTZD2023001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by X. M., L. Y., P. S., and L. X. The first draft of the manuscript was written by X. M., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peng Song, Lixin Xia or Long Yu.

Ethics declarations

Ethics Approval

This research does not include human or animal subjects.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Song, P., Xia, L. et al. A Simple and Sensitive Method for Detecting Thiamethoxam Residues Using β-CD-AgNP. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02232-5

Keywords

Navigation