Skip to main content
Log in

Ratiometric electrochemical immunoassay for procalcitonin based on dual signal probes: Ag NPs and Nile blue A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In order to determine procalcitonin, a sandwich-type ratiometic electrochemical immunosensor was developed by differential pulse voltammetry (DPV). Due to high chemical stability and good biocompatibility, graphitic carbon nitride (g-C3N4) could be used as feasible supporter to carry silver nanoparticles (Ag NPs) with an obvious oxidative peak (measured typically at + 0.3 V vs. SCE). Ag NPs loaded onto g-C3N4 were not only beneficial to prevent the agglomeration of Ag NPs, but also favorable to improve the electron transfer velocity of g-C3N4. Moreover, the g-C3N4-Ag NPs as the matrix could immobilize primary antibody by Ag–N bond. Nile blue A (NBA), an excellent redox probe based on the redox reaction with two-electrons, provides a current signal at − 0.38 V (vs. SCE). Zr-based metal organic framework (UiO-67), an ideal framework material with large specific surface area and high porosity, could absorb the substantial water-soluble NBA by electrostatic adsorption. The UiO-67 modified by NBA (NBA-UiO-67) owned admirable biocompatibility and was a qualifying marker to load the secondary antibody. For the immunosensor, the current ratio of NBA to Ag NPs (INBA/IAg NPs) was increased as the concentrations of PCT increased. Under the optimum conditions, the linear range of the immunosensor was 0.005 to 50 ng/mL; the detection limit was 1.67 pg/mL (S/N = 3), which reflected the excellent analytical performance of the sensor. The proposed immunosensor strategy is a simple and dependable platform, with great application potential in biometric analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bouadma L, Luyt C-E, Tubach F, Cracco C, Alvarez A, Schwebel C, Schortgen F, Lasocki S, Veber B, Dehoux M, Bernard M, Pasquet B, Régnier B, Brun-Buisson C, Chastre J, Wolff M (2010) Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORA TA trial): a multicentre randomised controlled trial. Lancet 375:463–474

    Article  CAS  Google Scholar 

  2. Li YK, Liu W, Jin G, Niu Y, Chen YP, Xie MX (2018) Label-free sandwich imaging ellipsometry immunosensor for serological detection of procalcitonin. Anal Chem 90:8002–8010

    Article  CAS  Google Scholar 

  3. Tang BMP, Eslick GD, Craig JC, Mclean AS (2007) Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 7:210–217

    Article  CAS  Google Scholar 

  4. Schneider H-G, Lam QT (2007) Procalcitonin for the clinical laboratory: a review. Pathology 39:383–390

    Article  CAS  Google Scholar 

  5. Sui YY, Xu AG, Jin XR, Zheng J, He X, Cheng Y, Xie QJ, Liu RS (2018) In situ enzymatic generation of gold for ultrasensitive amperometric sandwich immunoassay of procalcitonin. Biosens Bioelectron 117:422

    Article  CAS  Google Scholar 

  6. Zhao Y, Zhou CH, Wu RL, Shen HB, Li LS (2015) Preparation of multi-shell structured fluorescent composite nanoparticles for ultrasensitive human procalcitonin detection. RSC Adv 5:5988–5995

    Article  CAS  Google Scholar 

  7. Liao T, Yuan F, Yu HY, Li ZG (2016) An ultrasensitive ELISA method for the detection of procalcitonin based on magnetic beads and enzyme-antibody labeled gold nanoparticles. Anal Methods 8:1577–1585

    Article  CAS  Google Scholar 

  8. Li FY, Feng JH, Gao ZQ, Shi L, Wu D, Du B, Wei Q (2019) Facile synthesis of Cu2O@ TiO2-PtCu nanocomposites as a signal amplification strategy for the insulin detection. ACS Appl Mater Inter 11:8945–8953

    Article  CAS  Google Scholar 

  9. Peng KF, Xie P, Yang ZH, Yuan R, Zhang KQ (2017) Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy. Biosens Bioelectron 102:282–287

    Article  Google Scholar 

  10. Wang YG, Zhao GH, Zhang Y, Pang XH, Cao W, Du B, Wei Q (2018) Sandwich-type electrochemical immunosensor for CEA detection based on Ag/MoS2@Fe3O4 and an analogous ELISA method with total internal reflection microscopy. Sensor Actuat B-Chem 266:561–569

    Article  CAS  Google Scholar 

  11. Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349

    Article  CAS  Google Scholar 

  12. Liu LL, Tai XS, Zhou XJ, Liu L, Zhang X, Ding LY, Zhang YC (2020) Au–Pt bimetallic nanoparticle catalysts supported on UiO-67 for selective 1,3-butadiene hydrogenation. J Taiwan Inst Chem Eng 114:220–227

    Article  CAS  Google Scholar 

  13. Dai G, Li Z, Luo FF, Ai AY, Chen B, Wang QJ (2019) Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchimica Acta 186:620

    Article  Google Scholar 

  14. Xie HZ, Dong J, Duan JL, Hou JY, Ai SY, Li XY (2019) Magnetic nanoparticles-based immunoassay for aflatoxin B1 using porous g-C3N4 nanosheets as fluorescence probes. Sensor Actuat B-Chem 278:147–152

    Article  CAS  Google Scholar 

  15. Sun B, Dong J, Cui L, Feng TT, Zhu JJ, Liu XH, Ai SY (2019) A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosens Bioelectron 124–125:1–7

    Article  Google Scholar 

  16. Nagajyothi PC, Pandurangan M, Vattikuti SVP, Tettey CO, Sreekanth TVM, Shim J (2017) Enhanced photocatalytic activity of Ag/g-C3N4 composite. Sep Puri Technol 188:228–237

    Article  CAS  Google Scholar 

  17. Ren XL, Meng XW, Chen D, Tang FQ, Jiao J (2005) Using silver nanoparticle to enhance current response of biosensor. Biosens Bioelectron 21:433–437

    Article  CAS  Google Scholar 

  18. Xu R, Lu P, Wu B, Wang XP, Pang XH, Du B, Fan DW, Wei Q (2018) Using SiO2/PDA-Ag NPs to dual-inhibited photoelectrochemical activity of CeO2-CdS composites fabricated a novel immunosensor for BNP ultrasensitive detection. Sensor Actuat B-Chem 274:349–355

    Article  CAS  Google Scholar 

  19. Guo Q, Zhang CW, Zhang CF, Xin S, Zhang PC, Shi QF, Zhang DW, You Y (2020) Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. J Energy Chem 41:185–193

    Article  Google Scholar 

  20. Gowthaman NSK, Lim HN, Balakumar V, Shankar S (2020) Ultrasonic synthesis of CeO2@organic dye nanohybrid: environmentally benign rabid electrochemical sensing platform for carcinogenic pollutant in water samples. Ultrason sonochem 61:104828

    Article  CAS  Google Scholar 

  21. Duong HD, Shin Y, Rhee JI (2020) Development of novel optical pH sensors based on coumarin 6 and nile blue A encapsulated in resin particles and specific support materials. Mat Sci Eng C-Mater 107:110323

    Article  CAS  Google Scholar 

  22. Kurouski D, Mattei M, Duyne RPV (2015) Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano lett 15:7956–7962

    Article  CAS  Google Scholar 

  23. Zhao GH, Wang YG, Li XJ, Dong X, Wang H, Du B, Cao W, Wei Q (2018) Quenching electrochemiluminescence immunosensor based on resonance energy transfer between ruthenium (II) complex incorporated in the UiO-67 metal–organic framework and gold nanoparticles for insulin detection. ACS Appl Mater Inter 10:22932–22938

    Article  CAS  Google Scholar 

  24. Xu HT, Li YS, Luo XK, Xu ZL, Ge JP (2017) Monodispersed gold nanoparticles supported on a zirconium-based porous metal–organic framework and their high catalytic ability for the reverse water–gas shift reaction. Chem Commun 53:7953–7956

    Article  CAS  Google Scholar 

  25. Zhang DW, Zhao J, Liu QL, Xia ZG (2019) Synthesis and luminescence properties of CsPbX3@ Uio-67 composites toward stable photoluminescence convertors. Inorg Chem 58:1690–1696

    Article  CAS  Google Scholar 

  26. Zhu XY, Li B, Yang J, Li YS, Zhao WR, Shi JL, Gu JL (2014) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl Mater Inter 7:223–231

    Article  Google Scholar 

  27. Zhu XY, Gu JL, Yang J, Wang Z, Li YS, Zhao LM, Zhao WR, Shi JL (2015) Zr-based metal–organic frameworks for specific and size-selective enrichment of phosphopeptides with simultaneous exclusion of proteins. J Mater Chem B 3:4242–4248

    Article  CAS  Google Scholar 

  28. Fidelli AM, Karadeniz B, Howarth AJ, Huskić I, Germann LS, Halasz I, Etter M, Moon SY, Dinnebier RE, Stilinović V, Farha OK, Friščić T, Užarević K (2018) Green and rapid mechanosynthesis of high-porosity NU-and UiO-type metal–organic frameworks. Chem Commun 54:6999–7002

    Article  CAS  Google Scholar 

  29. Lin K-YA, Lin J-T (2017) Ferrocene-functionalized graphitic carbon nitride as an enhanced heterogeneous catalyst of Fenton reaction for degradation of Rhodamine B under visible light irradiation. Chemosphere 182:54–64

    Article  CAS  Google Scholar 

  30. Dong X, Zhao GH, Liu L, Li X, Wei Q, Cao W (2018) Ultrasensitive competitive method-based electrochemiluminescence immunosensor for diethylstilbestrol detection based on Ru(bpy)32+ as luminophor encapsulated in metal–organic frameworks UiO-67. Biosens Bioelectron 110:201–206

    Article  CAS  Google Scholar 

  31. Pan JQ, Dong ZJ, Wang BB, Jiang ZY, Zhao C, Wang JJ, Song CS, Zheng YY, Li CR (2019) The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl Catal B-Environ 242:92–99

    Article  CAS  Google Scholar 

  32. Zhao GH, Wang YG, Li XJ, Yue Q, Dong X, Du B, Cao W, Wei Q (2019) Dual-quenching electrochemiluminescence strategy based on three-dimensional metal–organic frameworks for ultrasensitive detection of amyloid-β. Anal Chem 91:1989–1996

    Article  CAS  Google Scholar 

  33. Wang YG, Wang YL, Wu D, Ma HM, Zhang Y, Fan DW, Pang XH, Du B, Wei Q (2018) Label-free electrochemical immunosensor based o flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sensor Actuat B-Chem 255:125–132

  34. Wu D, Wei YC, Ren X, Ji XQ, Liu YW, Guo AD, Liu ZA, Asiri AM, Wei Q, Sun XP (2018) Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv Mater 30:1705366

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Scientific Instrument and Equipment Development Project of China (No. 21627809), the Jinan Scientific Research Leader Workshop Project (No. 2018GXRC024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Q., Li, X., Xu, X. et al. Ratiometric electrochemical immunoassay for procalcitonin based on dual signal probes: Ag NPs and Nile blue A. Microchim Acta 189, 126 (2022). https://doi.org/10.1007/s00604-022-05225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05225-5

Keywords

Navigation