Skip to main content
Log in

Photoelectrochemical determination of diclofenac using oriented single-crystalline TiO2 nanoarray modified with molecularly imprinted polypyrrole

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel molecular imprint photoelectrochemical (PEC) sensor has been prepared based on oriented single-crystalline TiO2 nanoarray (TNA) material for sensitive detection of diclofenac (DCF). The TNA obtained by the one-step hydrothermal method was characterized by XRD, SEM, and TEM. Polypyrrole film was formed on the TNA by electrochemical method, and DCF was imprinted on the polymer film as the template molecule. After the removal of DCF, there appeared lots of specific recognition sites that matched template molecules. The experimental results demonstrated that the constructed PEC sensor has good sensitivity and selectivity for the detection of DCF, which can be attributed to the high photoelectric conversion efficiency of TNA and the high selectivity of molecular imprinting technology. The fabricated PEC sensor showed a wide detection range (0.05–1000 μM) and a low limit of detection (0.0034 μM) for DCF, as well as good repeatability and stability. The proposed PEC sensor provided an effective strategy in the monitoring of environmental pollutants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Okoth OK, Yan K, Feng J, Zhang J (2018) Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sens Actuators, B Chem 256:334–341. https://doi.org/10.1016/j.snb.2017.10.089

    Article  CAS  Google Scholar 

  2. Xu H, Zhu S, Xia M, Wang F (2021) Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: experimental and adsorption mechanism study. J Hazard Mater 402:123815. https://doi.org/10.1016/j.jhazmat.2020.123815

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Jiang T, Zhao K, Deng A, Li J (2019) A novel electrochemiluminescent immunoassay for diclofenac using conductive polymer functionalized graphene oxide as labels and gold nanorods as signal enhancers. Talanta 193:184–191. https://doi.org/10.1016/j.talanta.2018.09.103

    Article  CAS  PubMed  Google Scholar 

  4. Nakhaei JM, Jamali MR, Sohrabnezhad S, Rahnama R (2020) Solvent-Assisted dispersive solid phase extraction of diclofenac from human serum and pharmaceutical tablets quantified by high-performance liquid chromatography. Microchem J 152:104260. https://doi.org/10.1016/j.microc.2019.104260

    Article  CAS  Google Scholar 

  5. Agüera A, Mezcua M, Mocholí F, Vargas-Berenguel A, Fernández-Alba AR (2006) Application of gas chromatography-hybrid chemical ionization mass spectrometry to the analysis of diclofenac in wastewater samples. J Chromatogr A 1133(1):287–292. https://doi.org/10.1016/j.chroma.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  6. Jin W, Zhang J (2000) Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. J Chromatogr A 868(1):101–107. https://doi.org/10.1016/S0021-9673(99)01149-8

    Article  CAS  Google Scholar 

  7. Arancibia JA, Boldrini MA, Escandar GM (2000) Spectrofluorimetric determination of diclofenac in the presence of α-cyclodextrin. Talanta 52(2):261–268. https://doi.org/10.1016/S0039-9140(00)00338-6

    Article  CAS  PubMed  Google Scholar 

  8. Gao P, Wang H, Li P, Gao W, Zhang Y, Chen J, Jia N (2018) In-site synthesis molecular imprinting Nb2O5-based photoelectrochemical sensor for bisphenol A detection. Biosens Bioelectron 121:104–110. https://doi.org/10.1016/j.bios.2018.08.070

    Article  CAS  PubMed  Google Scholar 

  9. Ha T-J, Hong M-H, Park C-S, Park H-H (2013) Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking. Sens Actuators, B Chem 181:874–879. https://doi.org/10.1016/j.snb.2013.02.093

    Article  CAS  Google Scholar 

  10. Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20(2):258–262. https://doi.org/10.1002/adma.200702412

    Article  CAS  Google Scholar 

  11. Shi Y, Guo B, Corr SA, Shi Q, Hu Y-S, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9(12):4215–4220. https://doi.org/10.1021/nl902423a

    Article  CAS  PubMed  Google Scholar 

  12. Song X, Gao L (2008) Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. The Journal of Physical Chemistry C 112(39):15299–15305. https://doi.org/10.1021/jp804921g

    Article  CAS  Google Scholar 

  13. Bashiri R, Samsudin MFR, Mohamed NM, Suhaimi NA, Ling LY, Sufian S, Kait CF (2020) Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell. Appl Surf Sci 510:145482. https://doi.org/10.1016/j.apsusc.2020.145482

    Article  CAS  Google Scholar 

  14. Meng A, Zhang L, Cheng B, Yu J (2019) TiO2–MnOx–Pt hybrid multiheterojunction film photocatalyst with enhanced photocatalytic CO2-reduction activity. ACS Appl Mater Interfaces 11(6):5581–5589. https://doi.org/10.1021/acsami.8b02552

    Article  CAS  PubMed  Google Scholar 

  15. Welch EC, Powell JM, Clevinger TB, Fairman AE, Shukla A (2021) Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv Func Mater 31(44):2104126. https://doi.org/10.1002/adfm.202104126

    Article  CAS  Google Scholar 

  16. Xu J, Zhao C, Niu K, Gao Z, Song Y-Y (2021) Renewable photoelectrochemical cytosensing platform for rapid capture and detection of circulating tumor cells. Anal Chim Acta 1142:1–9. https://doi.org/10.1016/j.aca.2020.10.049

    Article  CAS  PubMed  Google Scholar 

  17. Krivitsky V, Hsiung L-C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F (2012) Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all. Nano Lett 12(9):4748–4756. https://doi.org/10.1021/nl3021889

    Article  CAS  PubMed  Google Scholar 

  18. Liu B, Deng D, Lee JY, Aydil ES (2010) Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. J Mater Res 25(8):1588–1594. https://doi.org/10.1557/jmr.2010.0204

    Article  CAS  Google Scholar 

  19. Shi T, Wen Z, Ding L, Liu Q, Guo Y, Ding C, Wang K (2019) Visible/near-infrared light response VOPc/carbon nitride nanocomposites: VOPc sensitizing carbon nitride to improve photo-to-current conversion efficiency for fabricating photoelectrochemical diclofenac aptasensor. Sens Actuators, B Chem 299:126834. https://doi.org/10.1016/j.snb.2019.126834

    Article  CAS  Google Scholar 

  20. Yang X, Gao Y, Ji Z, Zhu L-B, Yang C, Zhao Y, Shu Y, Jin D, Xu Q, Zhao W-W (2019) Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: synthesis and application for photoelectrochemical sensing of salicylic acid. Anal Chem 91(15):9356–9360. https://doi.org/10.1021/acs.analchem.9b01739

    Article  CAS  PubMed  Google Scholar 

  21. Cheng X, Shang Y, Cui Y, Shi R, Zhu Y, Yang P (2020) Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2(B) nanobelts decorated with CdS nanoparticles. Solid State Sci 99:106075. https://doi.org/10.1016/j.solidstatesciences.2019.106075

    Article  CAS  Google Scholar 

  22. Sutiono H, Tripathi AM, Chen H-M, Chen C-H, Su W-N, Chen L-Y, Dai H, Hwang B-J (2016) Facile synthesis of [101]-oriented rutile TiO2 nanorod array on FTO substrate with a tunable anatase–rutile heterojunction for efficient solar water splitting. ACS Sustainable Chemistry & Engineering 4(11):5963–5971. https://doi.org/10.1021/acssuschemeng.6b01066

    Article  CAS  Google Scholar 

  23. Khan MM, Ansari SA, Amal MI, Lee J, Cho MH (2013) Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale 5(10):4427–4435. https://doi.org/10.1039/c3nr00613a

    Article  CAS  PubMed  Google Scholar 

  24. Madhavi V, Kondaiah P, Ghosh M, Rao G M (2020) Hydrogen plasma-treated 1D/3D TiO2 nanorod array photoanode for efficient photoelectrochemical water splitting. Ceramics International 46 (11, Part A): 17791–17799. https://doi.org/10.1016/j.ceramint.2020.04.085

  25. Yuan J, Li C, Li T, Jing M, Yuan W, Li CM (2020) Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via polymer-mediated self-assembly of CoOx nanoparticles. Sol Energy Mater Sol Cells 207:110349. https://doi.org/10.1016/j.solmat.2019.110349

    Article  CAS  Google Scholar 

  26. Mostafavi M, Yaftian MR, Piri F, Shayani-Jam H (2018) A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens Bioelectron 122:160–167. https://doi.org/10.1016/j.bios.2018.09.047

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Chen N, Zhu Y, Shou D, Zhi M, Zeng X (2019) A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs. Microchim Acta 186(2):76. https://doi.org/10.1007/s00604-018-3187-6

    Article  CAS  Google Scholar 

  28. Pei Q, Qian R (1991) Protonation and deprotonation of polypyrrole chain in aqueous solutions. Synth Met 45(1):35–48. https://doi.org/10.1016/0379-6779(91)91845-2

    Article  CAS  Google Scholar 

  29. Zhao D, Zhang Y, Ji S, Lu Y, Bai X, Yin M, Huang C, Jia N (2021) Molecularly imprinted photoelectrochemical sensing based on ZnO/polypyrrole nanocomposites for acrylamide detection. Biosens Bioelectron 173:112816. https://doi.org/10.1016/j.bios.2020.112816

    Article  CAS  Google Scholar 

  30. Jiokeng SLZ, Tonle IK, Walcarius A (2019) Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sens Actuators, B Chem 287:296–305. https://doi.org/10.1016/j.snb.2019.02.038

    Article  CAS  Google Scholar 

  31. Mokhtari A, Karimi-Maleh H, Ensafi AA, Beitollahi H (2012) Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens Actuators, B Chem 169:96–105. https://doi.org/10.1016/j.snb.2012.03.059

    Article  CAS  Google Scholar 

  32. Basiri F, Taei M (2017) Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Microchim Acta 184(1):155–162. https://doi.org/10.1007/s00604-016-1995-0

    Article  CAS  Google Scholar 

  33. Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens Bioelectron 33(1):184–189. https://doi.org/10.1016/j.bios.2011.12.050

    Article  CAS  PubMed  Google Scholar 

  34. Eteya MM, Rounaghi GH, Deiminiat B (2019) Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem J 144:254–260. https://doi.org/10.1016/j.microc.2018.09.009

    Article  CAS  Google Scholar 

  35. Okoth OK, Yan K, Liu L, Zhang J (2016) Simultaneous electrochemical determination of paracetamol and diclofenac based on poly(diallyldimethylammonium chloride) functionalized graphene. Electroanalysis 28(1):76–82. https://doi.org/10.1002/elan.201500360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Shanghai Science and Technology Committee (Grant No. 17070503000); Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R49) “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials and International Joint Laboratory on Resource Chemistry (IJLRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaohui Zhou or Nengqin Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1494 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Gao, W., Zhou, C. et al. Photoelectrochemical determination of diclofenac using oriented single-crystalline TiO2 nanoarray modified with molecularly imprinted polypyrrole. Microchim Acta 189, 90 (2022). https://doi.org/10.1007/s00604-022-05206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05206-8

Keywords

Navigation