Skip to main content
Log in

Supramolecule self-assembly synthesis of amyloid phenylalanine-Cu fibrils with laccase-like activity and their application for dopamine determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Laccases are multicopper proteins for dioxygen-involved oxidation of a broad spectrum of organic compounds. I Novel amyloid-like phenylalanine-Cu (F-Cu(II)) fibrils were developed, which were obtained via supramolecular self-assembly of Cu2+ and phenylalanine (F) under basic condition. The obtained amyloid-like fibrils represented highly periodic structure, of which the lattice unit was constructed via alternating hydrophobic (aromatic environment) and hydrophilic (both hydrogen bonding and Cu(II) coordination) interactions. Relative to natural laccases, the amyloid-like F-Cu(II) architecture exhibited comparable substrate affinity (Michaelis constant, Km = 0.75 mM) and higher catalytic efficiency (kcat/Km = 773.33 × 10−3 g−1 min−1L). Moreover, it exhibited remarkable tolerances in pH (4 ~ 10), temperature (room temperature ~ 200 ℃), organic solvent, and long-term storage (> 15 days). These stabilities were superior among the reported nature and artificial laccases, presenting a more promising candidate in various chemo- or bio-applications. In addition, F-Cu(II) fibrils could catalyze the oxidation of dopamine (DA) to a brown product, in which a new absorption band at 470 nm was observed. Based on this, a simple colorimetric assay for the detection of DA could be performed.

Graphical abstract

We reported a novel amyloid-like phenylalanine-Cu fibrils, in which F-Cu+ complex can mimick the T1 site of natural laccase to oxidize the substrates. Then electrons transferred to F-Cu2+ complex via N-H···O=C hydrogen binding pathway. Finally, the dioxygen was transformed to water though radical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Qin L, Zhou M, Lou Z, Wei H (2018) Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal Chem 90:11696–11702

    Article  CAS  PubMed  Google Scholar 

  3. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  4. Zhong X, Xia H, Huang W, Li Z, Jiang Y (2020) Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chem Eng J 381:122758

    Article  CAS  Google Scholar 

  5. Wang Z, Zhang R, Yan X, Fan K (2020) Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater Today 41:81–119

    Article  CAS  Google Scholar 

  6. Kuah E, Toh S, Yee J, Ma Q, Gao Z (2016) Enzyme mimics: advances and applications. Chem-Eur J 22:8404–8430

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Zheng Y, Ding D, Guo R (2017) Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir 33:13811–13820

    Article  CAS  PubMed  Google Scholar 

  8. Wu Y, Jiao L, Luo X, Xu W, Wei X, Wang H, Yan H, Gu W, Xu BZ, Du D, Lin Y, Zhu C (2019) Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 15:1903108

    Article  CAS  Google Scholar 

  9. Bonetta R (2018) Potential therapeutic applications of MnSODs and SOD-mimetics. Chem-Eur J 24:5032–5041

    Article  CAS  PubMed  Google Scholar 

  10. Wang C, Li Y, Yang W, Zhou L, Wei S (2021) Nanozyme with robust catalase activity by multiple mechanisms and its application for hypoxic tumor treatment. Adv Healthc Mater 10:2100601

    Article  CAS  Google Scholar 

  11. Huang HW, Zoppellaro G, Sakurai T (1999) Spectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen byRhus vernicifera laccase. J Biol Chem 274:32718–32724

    Article  CAS  PubMed  Google Scholar 

  12. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    Article  CAS  PubMed  Google Scholar 

  13. Kiiskinen LL, Kruus K, Bailey M, Ylösmäki E, Siika-Aho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074

    Article  CAS  PubMed  Google Scholar 

  14. Jurado M, Martinèz ÀT, Martinez MJ, Saparrat MCN (2011) Application of white-rot fungi in transformation, detoxification, or revalorization of agriculture wastes. Compr Biotechnol 6:595–603

    Google Scholar 

  15. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–26

    Article  CAS  Google Scholar 

  16. Wang Y, He C, Li W, Zhang J, Fu Y (2017) Catalytic performance of oligonucleotide-templated Pt nanozyme evaluated by laccase substrates. Catal Lett 147:2144–2152

    Article  CAS  Google Scholar 

  17. Dayi B, Kyzy AD, Akdogan HA (2019) Characterization of recuperating talent of white-rot fungi cells to dye-contaminated soil/water. Chin J Chem Eng 27:634–638

    Article  CAS  Google Scholar 

  18. Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm 61:121–139

    Article  CAS  Google Scholar 

  19. Reena DP, Kumar R, Kumar A (2014) Validation of computationally predicted substrates for laccase. Braz Arch Biol Techn 57:803–809

    Article  CAS  Google Scholar 

  20. Ren X, Liu J, Ren J, Tang F, Meng X (2015) One-pot synthesis of active copper-containing carbon dots with laccase-like activities. Nanoscale 7:19641–19646

    Article  CAS  PubMed  Google Scholar 

  21. Huang H, Lei L, Bai J, Zhang L, Song D, Zhao J, Li J, Li Y (2021) Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes. Chin J Chem Eng 29:167–175

    Article  CAS  Google Scholar 

  22. Ma H, Zheng N, Chen Y, Jiang L (2021) Laccase-like catalytic activity of Cu-tannic acid nanohybrids and their application for epinephrine detection. Colloid Surf A 613:126105

    Article  CAS  Google Scholar 

  23. Makam P, Yamijala SS, Tao K, Shimon LJ, Eisenberg DS, Sawaya MR, Wong BM, Gazit E (2019) Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat Catal 2:977–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A, Ruzgas T, Gorton L (2005) Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67:115–124

    Article  CAS  PubMed  Google Scholar 

  25. Aleksejeva O, Mateljak I, Ludwig R, Alcalde M, Shleev S (2019) Electrochemistry of a high redox potential laccase obtained by computer-guided mutagenesis combined with directed evolution. Electrochem Commun 106:106511

    Article  CAS  Google Scholar 

  26. de Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW (2012) The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav 106:394–399

    Article  PubMed  PubMed Central  Google Scholar 

  27. Segovia G, Del Arco A, Mora F (2009) Environmental enrichment, prefrontal cortex, stress, and aging of the brain. J Neural Transm 116:1007–1016

    Article  CAS  PubMed  Google Scholar 

  28. Elhag S, Ibupoto ZH, Liu X, Nur O, Willander M (2014) Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode. Sensor Actuat B-Chem 203:543–549

    Article  CAS  Google Scholar 

  29. Roychoudhury A, Basu S, Jha SK (2016) Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens Bioelectron 84:72–81

    Article  CAS  PubMed  Google Scholar 

  30. Mossou E, Teixeira SC, Mitchell EP, Mason SA, Adler-Abramovich L, Gazit E, Forsyth VT (2014) The self-assembling zwitterionic form of L-phenylalanine at neutral pH. Acta Crystallogr C 70:326–331

    Article  CAS  Google Scholar 

  31. Yao Y, Hou H, Liu X, Yu C, Li D, Dai Z (2019) Zinc l-phenylalanine chelate nanofiber anode in lithium ion battery. Surf Innov 7:27–35

    Article  Google Scholar 

  32. Betancor L, Johnson GR, Luckarift HR (2013) Stabilized laccases as heterogeneous bioelectrocatalysts. ChemCatChem 5:46–60

    Article  CAS  Google Scholar 

  33. Bonomo RP, Boudet AM, Cozzolino R, Rizzarelli E, Santoro AM, Sterjiades R, Zappalà R (1998) A comparative study of two isoforms of laccase secreted by the “white-rot” fungus Rigidoporus lignosus, exhibiting significant structural and functional differences. J Inorg Biochem 71:205–211

    Article  CAS  PubMed  Google Scholar 

  34. Xu X, Wang J, Huang R, Qi W, Su R, He Z (2021) Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catal Sci Technol 11:3402–3410

    Article  Google Scholar 

  35. Wang J, Huang R, Qi W, Su R, Binks BP, He Z (2019) Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B-Environ 254:452–462

    Article  CAS  Google Scholar 

  36. Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H (2015) Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew Chem Int Edit 54:6540–6544

    Article  CAS  Google Scholar 

  37. Dong S, Shin W, Jiang H, Wu X, Li Z, Holoubek J, Stickle WF, Key B, Liu C, Lu J, Greaney PA, Zhang X, Ji X (2019) Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5:1537–1551

    Article  CAS  Google Scholar 

  38. Ma X, Zhang Y, Gao Y, Li X, Wang C, Yuan H, Yu A, Zhang S, Cui Y (2020) Revelation of the chiral recognition of alanine and leucine in an l-phenylalanine-based metal–organic framework. Chem Commun 56:1034–1037

    Article  CAS  Google Scholar 

  39. Guan M, Wang M, Qi W, Su R, He Z (2021) Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Front Chem Sci Eng 15:310–318

    Article  CAS  Google Scholar 

  40. Sun H, Zhou Y, Ren J, Qu X (2018) Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Edit 57:9224–9237

    Article  CAS  Google Scholar 

  41. Chen Z, Wang Z, Ren J, Qu X (2018) Enzyme mimicry for combating bacteria and biofilms. Accounts Chem Res 51:789–799

    Article  CAS  Google Scholar 

  42. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48:3683–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang H (2017) Growth of au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29:1–5

    Article  Google Scholar 

  44. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614

    Article  CAS  PubMed  Google Scholar 

  45. Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJW, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microb 66:2052–2056

    Article  CAS  Google Scholar 

  46. Zhang S, Lin F, Yuan Q, Liu J, Li Y, Liang H (2020) Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. J Environ Sci 88:103–111

    Article  Google Scholar 

  47. An J, Shi Y, Fang J, Hu Y, Liu Y (2021) Multichannel ratiometric fluorescence sensor arrays for rapid visual monitoring of epinephrine, norepinephrine, and levodopa. Chem Eng J 425:130595

    Article  CAS  Google Scholar 

  48. Sharifi H, Tashkhourian J, Hemmateenejad B (2021) An array of metallic nanozymes can discriminate and detect a large number of anions. Sensor Actuat B-Chem 339:129911

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of JLICT Center of Characterization and Analysis.

Funding

This study received financial support from the Jilin Scientific and Technological Development Program (CN) (No. YDZJ202101ZYTS174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Meng or Na Xu.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2561 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yin, JH., Lan, C. et al. Supramolecule self-assembly synthesis of amyloid phenylalanine-Cu fibrils with laccase-like activity and their application for dopamine determination. Microchim Acta 189, 98 (2022). https://doi.org/10.1007/s00604-022-05194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05194-9

Keywords

Navigation