Skip to main content
Log in

Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, many efforts have been dedicated to creating enzyme-mimicking catalysts to replace natural enzymes in practical fields. Inspired by the pathological biomineralization behaviour of l-cystine, in this study, we constructed a laccase-like catalyst through the co-assembly of l-cystine with Cu ions. Structural analysis revealed that the formed catalytic Cu-cystine nanoleaves (Cu-Cys NLs) possess a Cu(I)-Cu(II) electron transfer system similar to that in natural laccase. Reaction kinetic studies demonstrated that the catalyst follows the typical Michaelis-Menten model. Compared with natural laccase, the Cu-Cys NLs exhibit superior stability during long-term incubation under extreme pH, high-temperature or high-salt conditions. Remarkably, the Cu-Cys NLs could be easily recovered and still maintained 76% of their activity after 8 cycles. Finally, this laccase mimic was employed to develop a colorimetric method for epinephrine detection, which achieved a wider linear range (9–455 µmol·L−1) and lower limit of detection (2.7 µmol·L−1). The Cu-Cys NLs also displayed excellent specificity and sensitivity towards epinephrine in a test based on urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun H, Zhou Y, Ren J, Qu X. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angewandte Chemie International Edition in English, 2018, 57(30): 9224–9237

    Article  CAS  Google Scholar 

  2. Chen Z, Wang Z, Ren J, Qu X. Enzyme mimicry for combating bacteria and biofilms. Accounts of Chemical Research, 2018, 51(3): 789–799

    Article  CAS  Google Scholar 

  3. Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48(14): 3683–3704

    Article  CAS  Google Scholar 

  4. Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Advanced Materials, 2017, 29(32): 1–5

    Article  Google Scholar 

  5. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 2019, 119(6): 4357–4412

    Article  CAS  Google Scholar 

  6. Tian L, Qi J, Oderinde O, Yao C, Song W, Wang Y. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microrna biosensor. Biosensors & Bioelectronics, 2018, 110: 110–117

    Article  CAS  Google Scholar 

  7. Han L, Zhang H, Chen D, Li F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Advanced Functional Materials, 2018, 28(17): 1800018

    Article  Google Scholar 

  8. Wright A M, Wu Z, Zhang G, Mancuso J L, Comito R J, Day R W, Hendon C H, Miller J T, Dincă M. A structural mimic of carbonic anhydrase in a metal-organic framework. Chem, 2018, 4(12): 2894–2901

    Article  CAS  Google Scholar 

  9. Zozulia O, Dolan M A, Korendovych I V. Catalytic peptide assemblies. Chemical Society Reviews, 2018, 47(10): 3621–3639

    Article  CAS  Google Scholar 

  10. Lewis J C. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids. Current Opinion in Chemical Biology, 2015, 25: 27–35

    Article  CAS  Google Scholar 

  11. Duncan K L, Ulijn R V. Short peptides in minimalistic biocatalyst design. Biocatalysis, 2015, 1(1): 67–81

    Article  Google Scholar 

  12. Liang K, Wang R, Boutter M, Doherty C M, Mulet X, Richardson J J. Biomimetic mineralization of metal-organic frameworks around polysaccharides. Chemical Communications, 2017, 53(7): 1249–1252

    Article  CAS  Google Scholar 

  13. Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: from material tactics to biological strategy. Advanced Materials, 2017, 29(14): 1605903

    Article  Google Scholar 

  14. Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano, 2016, 10(3): 3453–3460

    Article  CAS  Google Scholar 

  15. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Materials Today, 2016, 19(2): 69–87

    Article  CAS  Google Scholar 

  16. Xu P, Wang X, Li T, Wu H, Li L, Chen Z, Zhang L, Guo Z, Chen Q. Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. Nanoscale, 2020, 12(6): 4051–4060

    Article  CAS  Google Scholar 

  17. Ejgenberg M, Mastai Y. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12(10): 4995–5001

    Article  CAS  Google Scholar 

  18. Moe O W. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367(9507): 333–344

    Article  CAS  Google Scholar 

  19. Zhang R, Wang L, Han J, Wu J, Li C, Ni L, Wang Y. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. Journal of Hazardous Materials, 2020, 383: 121130

    Article  CAS  Google Scholar 

  20. Ramachandran E, Natarajan S. Crystal growth of some urinary stone constituents: III. In-vitro crystallization of L-cystine and its characterization. Crystal Research and Technology, 2004, 39(4): 308–312

    Article  CAS  Google Scholar 

  21. Wang X, Duan P, Liu M. Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic L-glutamide. Chemical Communications, 2012, 48 (60): 7501–7503

    Article  CAS  Google Scholar 

  22. Mamun M A, Ahmed O, Bakshi P K, Yamauchi S, Ehsan M Q. Synthesis and characterization of some metal complexes of cystine: [Mn(C6H10N2O4S2)]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn (II), Cd(II), Hg(II) and Pb(II). Russian Journal of Inorganic Chemistry, 2011, 56(12): 1972–1980

    Article  CAS  Google Scholar 

  23. Kathalikkattil A C, Bisht K K, Aliaga-Alcalde N, Suresh E. Synthesis, magnetic properties, and structural investigation of mixed-ligand Cu(II) helical coordination polymers with an amino acid backbone and N-donor propping: 1-D helical, 2-D hexagonal net (hcb), and 3-D ins topologies. Crystal Growth & Design, 2011, 11(5): 1631–1641

    Article  CAS  Google Scholar 

  24. Li A, Mu X, Li T, Wen H, Li W, Li Y, Wang B. Formation of porous cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale, 2018, 10(25): 11948–11954

    Article  CAS  Google Scholar 

  25. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

    Article  CAS  Google Scholar 

  26. Leng M, Liu M Z, Zhang Y B, Wang Z Q, Yu C, Yang X G, Zhang H J, Wang C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic co oxidation activity. Journal of the American Chemical Society, 2010, 132(48): 17084–17087

    Article  CAS  Google Scholar 

  27. Liu K, Yuan C, Zou Q, Xie Z, Yan X. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition in English, 2017, 56(27): 7876–7880

    Article  CAS  Google Scholar 

  28. Guan Z B, Luo Q, Wang H R, Chen Y, Liao X R. Bacterial laccases: promising biological green tools for industrial applications. Cellular and Molecular Life Sciences, 2018, 75(19): 3569–3592

    Article  CAS  Google Scholar 

  29. Tian Q, Dou X, Huang L, Wang L, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-l10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. Journal of Hazardous Materials, 2020, 382:121084

    Article  CAS  Google Scholar 

  30. Mate D M, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 2017, 10(6): 1457–1467

    Article  CAS  Google Scholar 

  31. Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Applied Materials & Interfaces, 2017, 9(2): 1352–1360

    Article  CAS  Google Scholar 

  32. Bulatov A V, Petrova A V, Vishnikin A B, Moskvin A L, Moskvin L N. Stepwise injection spectrophotometric determination of epinephrine. Talanta, 2012, 96: 62–67

    Article  CAS  Google Scholar 

  33. Shankar S S, Shereema R M, Rakhi R B. Electrochemical determination of adrenaline using mxene/graphite composite paste electrodes. ACS Applied Materials & Interfaces, 2018, 10(50): 43343–43351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21621004 and 21676191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfan Wang.

Electronic Supplementary Material

11705_2020_1940_MOESM1_ESM.pdf

Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, M., Wang, M., Qi, W. et al. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Front. Chem. Sci. Eng. 15, 310–318 (2021). https://doi.org/10.1007/s11705-020-1940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1940-y

Keywords

Navigation