Skip to main content
Log in

Carbon quantum dots—Annexin V probe: photoinduced electron transfer mechanism, phosphatidylserine detection, and apoptotic cell imaging

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An annexin V-based probe is designed and fabricated using carbon quantum dot as highly stable and biocompatible fluorescent crystals for real-time fluorescence imaging of apoptotic cells. Carbon quantum dots were synthesized, characterized, and conjugated to annexin V. The fluorescence of CQDs at 450 nm (excitation at 350 nm) is quenched due to the photoinduced electron transfer between “carbon quantum dots” and two amino acids (tyrosine and tryptophan) in the annexin structure as quencher. The probe shows very strong and bright fluorescence emission in the presence of phosphatidylserine on the outer layer of the apoptotic cell membrane. It was shown that using fluorescence spectroscopy, the probe can be applied to sensitive phosphatidylserine determination and using fluorescence microscopy, it is possible to monitor cell apoptosis in real time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  2. Li J, Gray BD, Pak KY, Ng CK (2019) Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl Med Biol 78:23–30

    PubMed  Google Scholar 

  3. Liu T, Zhu W, Yang X, Chen L, Yang R, Hua Z, Li G (2009) Detection of apoptosis based on the interaction between annexin V and phosphatidylserine. Anal Chem 81(6):2410–2413

    CAS  PubMed  Google Scholar 

  4. Shi H, He X, Wang K, Yuan Y, Deng K, Chen J, Tan W (2007) Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC-DSFNPs)–based bioprobes conjugated to Annexin V for apoptosis detection and imaging. Nanomedicine 3(4):266–272

    CAS  PubMed  Google Scholar 

  5. Wuest M, Perreault A, Richter S, Knight JC, Wuest F (2019) Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis. Apoptosis 24(3–4):221–244

    CAS  PubMed  Google Scholar 

  6. Hu C, Tan H, Lin Q, Abudupataer M, Zhao Y, Li J, Gu J, Cheng D, Wang C, Zhu K (2019) SPECT/CT imaging of apoptosis in aortic aneurysm with radiolabeled duramycin. Apoptosis 24(9):745–755

    PubMed  Google Scholar 

  7. Savla R, Minko T (2017) Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 113:122–140

    CAS  PubMed  Google Scholar 

  8. Krishnan A, Koski G, Mou X (2020) Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells. Toxicon 173:20–26

    CAS  PubMed  Google Scholar 

  9. Aravani D, Foote K, Figg N, Finigan A, Uryga A, Clarke M, Bennett M (2020) Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis 25(9):648–662

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma R, Huang X, Brekken RA, Schroit AJ (2017) Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br J Cancer 117(4):545–552

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren X, Zhao B, Chang H, Xiao M, Wu Y, Liu Y (2018) Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells. Mol Med Rep 17(6):8289–8299

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahmud F, Deng S, Chen H, Miller DD, Li W (2020) Orally available tubulin inhibitor VERU-111 enhances antitumor efficacy in paclitaxel-resistant lung cancer. Cancer Lett 495:76–88

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng F-M, Chen W-B, Qin T, Lv L-N, Feng B, Lu Y-L, Li Z-Q, Wang X-C, Tao L-J, Li H-W (2019) ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells. BMB Rep 52(9):566

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhong Z-F, Yu H-B, Wang C-M, Qiang W-A, Wang S-P, Zhang J-M, Yu H, Cui L, Wu T, Li D-Q (2017) Furanodiene induces extrinsic and intrinsic apoptosis in doxorubicin-resistant MCF-7 breast cancer cells via NF-κB-independent mechanism. Front Pharmacol 8:648

    PubMed  PubMed Central  Google Scholar 

  15. Demchenko AP (2013) Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 65(2):157–172. https://doi.org/10.1007/s10616-012-9481-y

    Article  CAS  PubMed  Google Scholar 

  16. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    CAS  PubMed  Google Scholar 

  17. Martinez MM, Reif RD, Pappas D (2010) Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal Bioanal Chem 396(3):1177–1185

    CAS  PubMed  Google Scholar 

  18. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46(12):2035–2050

    CAS  PubMed  Google Scholar 

  19. Martin S, Reutelingsperger C, McGahon AJ, Rader JA, Van Schie R, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    CAS  PubMed  Google Scholar 

  20. Zhang G, Gurtu V, Kain SR, Yan G (1997) Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23(3):525–531

    CAS  PubMed  Google Scholar 

  21. Cal PM, Sieglitz F, Santos FM, Carvalho CP, Guerreiro A, Bertoldo JB, Pischel U, Gois PM, Bernardes GJ (2017) Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells. Chem Commun 53(2):368–371

    CAS  Google Scholar 

  22. Wang X, Li J, Man D, Liu R, Zhao J (2020) Early detection of steroid-induced femoral head necrosis using 99m Tc-Cys-Annexin V-based apoptosis imaging in a rabbit model. Mol Med 26(1):1–11

    Google Scholar 

  23. Chen H, Ahsan SS, Santiago-Berrios MEB, Abruña HD, Webb WW (2010) Mechanisms of quenching of Alexa fluorophores by natural amino acids. J Am Chem Soc 132(21):7244–7245

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim H, Kim HY, Lee EY, Choi BK, Jang H, Choi Y (2020) A quenched Annexin V-fluorophore for the real-time fluorescence imaging of apoptotic processes in vitro and in vivo. Adv Sci 7(24):2002988

    CAS  Google Scholar 

  25. Mansur AA, de Carvalho FG, Mansur RL, Carvalho SM, de Oliveira LC, Mansur HS (2017) Carboxymethylcellulose/ZnCdS fluorescent quantum dot nanoconjugates for cancer cell bioimaging. Int J Biol Macromol 96:675–686

    CAS  PubMed  Google Scholar 

  26. Pedram P, Mahani M, Torkzadeh-Mahani M, Hasani Z, Ju H (2014) Cadmium sulfide quantum dots modified with the human transferrin protein siderophiline for targeted imaging of breast cancer cells. Microchim Acta 183(1):67–71

  27. Wang C, Xiao R, Wang S, Yang X, Bai Z, Li X, Rong Z, Shen B, Wang S (2019) Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens Bioelectron 146:111754

    CAS  PubMed  Google Scholar 

  28. Sheng E, Lu Y, Tan Y, Xiao Y, Li Z, Dai Z (2020) Ratiometric fluorescent quantum dot-based biosensor for chlorothalonil detection via an inner-filter effect. Anal Chem 92(6):4364–4370

    CAS  PubMed  Google Scholar 

  29. Moon H, Lee C, Lee W, Kim J, Chae H (2019) Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater 31(34):1804294

    Google Scholar 

  30. Shen H, Gao Q, Zhang Y, Lin Y, Lin Q, Li Z, Chen L, Zeng Z, Li X, Jia Y (2019) Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 13(3):192–197

    CAS  Google Scholar 

  31. Buz PT, Duman FD, Erkisa M, Demirci G, Ari F, Ulukaya E, Acar HY (2019) Development of near-infrared region luminescent N-acetyl-L-cysteine-coated Ag2S quantum dots with differential therapeutic effect. Nanomedicine 14(8):969–987

    CAS  PubMed  Google Scholar 

  32. Tsuboi S, Jin T (2017) Bioluminescence resonance energy transfer (BRET)-coupled Annexin V-functionalized quantum dots for near-infrared optical detection of apoptotic cells. ChemBioChem 18(22):2231–2235

    CAS  PubMed  Google Scholar 

  33. Ruan L, Ge M, Huang X, Ren J (2018) Assay of single-cell apoptosis by ensemble and single-molecule fluorescence methods: annexin-V/polyethylene glycol-functionalized quantum dots as probes. Langmuir 34(34):10040–10047

    CAS  PubMed  Google Scholar 

  34. Khakbaz F, Mahani M (2017) Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes. Anal Biochem 523:32–38

    CAS  PubMed  Google Scholar 

  35. Saljoughi H, Khakbaz F, Mahani M (2020) Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging. Photodiagnosis Photodyn Ther 30:101687

    CAS  PubMed  Google Scholar 

  36. Mahani M, Mousapour Z, Divsar F, Nomani A, Ju H (2019) A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Microchim Acta 186(3):132

    Google Scholar 

  37. Mahani M, Pourrahmani-Sarbanani M, Yoosefian M, Divsar F, Mousavi SM, Nomani A (2021) Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: an in vitro and in silico study. J Drug Deliv Sci Technol 62:102342

    CAS  Google Scholar 

  38. Rahimi M, Mahani M, Hassani Z (2019) Carbon quantum dots fluorescence quenching for potassium optode construction. Luminescence 34(4):402–406

    CAS  PubMed  Google Scholar 

  39. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109

    CAS  Google Scholar 

  40. Molaei MJ (2019) Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv 9(12):6460–6481

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahani M, Mahmoudi F, Fassihi J, Hasani Z, Divsar F (2021) Carbon dots-embedded N-acetylneuraminic acid and glucuronic acid-imprinted polymers for targeting and imaging of cancer cells. Microchim Acta 188(7):224

  42. Mahani M, Kordi M (2021) Warfarin Induced Quenching of the Carbon Quantum Dots: Mechanism Study and Warfarin Sensor Construction. J Fluoresc 31(6):1731–1738

  43. Mahani M, Taheri M, Divsar F, Khakbaz F, Nomani A, Ju H (2021) Label-free triplex DNA-based biosensing of transcription factor using fluorescence resonance energy transfer between N-doped carbon dot and gold nanoparticle. Analytica Chimica Acta 1181:338919

    CAS  PubMed  Google Scholar 

  44. Raghu A, Gadaginamath G, Mathew N, Halligudi S, Aminabhavi T (2007) Synthesis and characterization of novel polyurethanes based on 4, 4′-[1, 4-phenylenedi-diazene-2, 1-diyl] bis (2-carboxyphenol) and 4, 4′-[1, 4-phenylenedi-diazene-2, 1-diyl] bis (2-chlorophenol) hard segments. React Funct Polym 67(6):503–514

    CAS  Google Scholar 

  45. Raghu A, Gadaginamath G, Priya M, Seema P, Jeong HM, Aminabhavi T (2008) Synthesis and characterization of novel polyurethanes based on N1, N4-bis [(4-hydroxyphenyl) methylene] succinohydrazide hard segment. J Appl Polym Sci 110(4):2315–2320

    CAS  Google Scholar 

  46. Permatasari FA, Aimon AH, Iskandar F, Ogi T, Okuyama K (2016) Role of C-N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci Rep 6(1):1–8

    Google Scholar 

  47. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133(26):9960–9963

    CAS  PubMed  Google Scholar 

  48. Lai Q, Zhu S, Luo X, Zou M, Huang S (2012) Ultraviolet-visible spectroscopy of graphene oxides. Aip Adv 2(3):032146

    Google Scholar 

  49. Uran S, Alhani A, Silva C (2017) Study of ultraviolet-visible light absorbance of exfoliated graphite forms. AIP Adv 7(3):035323

    Google Scholar 

  50. Kitai A (2008) Luminescent materials and applications, vol 25. John Wiley & Sons

  51. Doose S, Neuweiler H, Sauer M (2005) A close look at fluorescence quenching of organic dyes by tryptophan. ChemPhysChem 6(11):2277–2285

    CAS  PubMed  Google Scholar 

  52. Zhang Y, Yuan S, Lu R, Yu A (2013) Ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine and N-acetyltryptophan in aqueous solution: proton-coupled electron transfer versus electron transfer. J Phys Chem B 117(24):7308–7316

    CAS  PubMed  Google Scholar 

  53. Sharma A, Enderlein J, Kumbhakar M (2017) Photon antibunching reveals static and dynamic quenching interaction of tryptophan with Atto-655. J Phys Chem Lett 8(23):5821–5826

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mahani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahani, M., Karimi-Mazidi, P., Khakbaz, F. et al. Carbon quantum dots—Annexin V probe: photoinduced electron transfer mechanism, phosphatidylserine detection, and apoptotic cell imaging. Microchim Acta 189, 69 (2022). https://doi.org/10.1007/s00604-021-05147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05147-8

Keywords

Navigation