Skip to main content
Log in

A gold nanoparticle-based lateral flow immunoassay for atrazine point-of-care detection using a handhold scanning device as reader

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described to achieve accurate quantitative detection of atrazine (ATZ) in maize by using lateral flow strips based on gold nanoparticles (GNPs) and a handheld scanning reader. GNPs of 15 nm in diameter were applied as label, and a lateral flow immune assay strip was prepared. The linear range was 5.01–95.86 ng mL−1 with a detection limit of 4.92 ng mL−1 in phosphate buffer, 4 times better than the readout by the naked eye. ATZ-spiked corn samples were also analysed. The accuracy of results of spiked samples was confirmed by ELISA and liquid chromatography-tandem mass spectrometry (HPLC), which proved the reliability of the proposed method. A handhold device with an optical scanning system was designed for on-site quantitative detection. Combined with the pretreatment, the assay could be completed in less than 20 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kwon EY, Ruan X, Wang L, Lin Y, Du D, Van Wie BJ (2020) Mesoporous Pd@Pt nanoparticle-linked immunosorbent assay for detection of atrazine. Anal Chim Acta 1116:36–44. https://doi.org/10.1016/j.aca.2020.03.045

    Article  CAS  PubMed  Google Scholar 

  2. Cañero AI, Cox L, Redondo-Gómez S, Mateos-Naranjo E, Hermosín MC, Cornejo J (2011) Effect of the herbicides terbuthylazine and glyphosate on photosystem II photochemistry of young olive (Olea europaea) plants. J Agric Food Chem 59(10):5528–5534. https://doi.org/10.1021/jf200875u

    Article  CAS  PubMed  Google Scholar 

  3. Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16(1):211–237. https://doi.org/10.1007/s10311-017-0665-8

    Article  CAS  Google Scholar 

  4. Pathak RK, Dikshit AK, Pathak RK, Dikshit AK (2011) Atrazine and human health. Int J Ecosyst 1(1):14–23

    Article  Google Scholar 

  5. Liu G, Yang X, Li T, Yu H, Du X, She Y, Wang J, Wang S, Jin F, Jin M, Shao H, Zheng L, Zhang Y, Zhou P (2015) Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles. Microchim Acta 182(11):1983–1989. https://doi.org/10.1007/s00604-015-1531-7

    Article  CAS  Google Scholar 

  6. Licong J, Ming S, Xingqiang W, Hanwen S (2016) Rapid selective accelerated solvent extraction and simultaneous determination of herbicide atrazine and its metabolites in fruit by ultra high performance liquid chromatography. J Sep Sci 39(23):4512–4519

    Article  Google Scholar 

  7. Qie Z, Bai J, Xie B, Yuan L, Gao Z (2015) Sensitive detection of atrazine in tap water using TELISA. Analyst 140(15):5220–5226

    Article  CAS  Google Scholar 

  8. Sai N, Sun W, Wu Y, Sun Z, Yu G, Huang G (2016) A highly sensitive immunoassay for atrazine based on covalently linking the small molecule hapten to a urea–glutaraldehyde network on a polystyrene surface. Int Immunopharmacol 40:480–486

    Article  CAS  Google Scholar 

  9. Yang M, Zhao X, Zheng S, Liu X, Jin B, Li H, Gan Y (2017) A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 nanotube arrays. J Electroanal Chem 791:17–22. https://doi.org/10.1016/j.jelechem.2017.03.009

  10. Mou R-X, Chen M-X, Cao Z-Y, Zhu Z-W (2011) Simultaneous determination of triazine herbicides in rice by high-performance liquid chromatography coupled with high resolution and high mass accuracy hybrid linear ion trap-orbitrap mass spectrometry. Analytica Chimica Acta 706(1):149–156. https://doi.org/10.1016/j.aca.2011.08.030

  11. Maryam A, Abbas O, Jinhua L, Xiaoyan W, Zhiyang Z, Jaebum C, Lingxin C (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33(30):2100543

    Article  Google Scholar 

  12. Maryam A, Abbas O, Zhiyang Z, Yunqing W, Rongchao M, Longwen F, Xiaoyan W, Jiping M, Lingxin C (2020) Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

  13. Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G (2019) Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Microchim Acta 187(1):70. https://doi.org/10.1007/s00604-019-3822-x

    Article  CAS  Google Scholar 

  14. Mak WC, Beni V, Turner APF (2016) Lateral-flow technology: from visual to instrumental. Trends Anal Chem 79:297–305

    Article  CAS  Google Scholar 

  15. Panraksa Y, Apilux A, Jampasa S, Puthong S, Henry CS, Rengpipat S, Chailapakul O (2021) A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection. Sens Actuators, B Chem 329:129241. https://doi.org/10.1016/j.snb.2020.129241

    Article  CAS  Google Scholar 

  16. Le T, Yan P, Xu J, Hao Y (2013) A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chem 138(2–3):1610–1615

    Article  CAS  Google Scholar 

  17. Song C, Liu Q, Zhi A, Yang J, Zhi Y, Li Q, Hu X, Deng R, Casas J, Tang L, Zhang G (2011) Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of olaquindox residues. J Agric Food Chem 59(17):9319–9326. https://doi.org/10.1021/jf202213m

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, Du D, Lin Y, Liu F (2014) A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta 181(13–14):1565–1572

    Article  CAS  Google Scholar 

  19. Zhao Y, Zhang G, Liu Q, Teng M, Yang J, Wang J (2008) Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. J Agric Food Chem 56(24):12138–12142. https://doi.org/10.1021/jf802648z

    Article  CAS  PubMed  Google Scholar 

  20. Jiao H, Yong-Zhong J, Ling-Ling W, Zhen W, Yuhai B, Gary W, Xiangguo Q, Jianjun C, Dai-Wen P, Zhi-Ling Z (2017) Dual-signal readout nanospheres for rapid point-of-care detection of Ebola virus glycoprotein. Anal Chem 89(24):13105–13111. https://doi.org/10.1021/acs.analchem.7b02222

  21. Eltzov E, Guttel S, Adarina LYK, Sinawang PD, Ionescu RE, Marks RS (2015) Lateral flow immunoassays – from paper strip to smartphone technology. Electroanalysis 27(9):2116–2130

    Article  CAS  Google Scholar 

  22. Song L-W, Wang Y-B, Fang L-L, Wu Y, Yang L, Chen J-Y, Ge S-X, Zhang J, Xiong Y-Z, Deng X-M, Min X-P, Zhang J, Chen P-J, Yuan Q, Xia N-S (2015) Rapid fluorescent lateral-flow immunoassay for hepatitis B virus genotyping. Anal Chem 87(10):5173–5180. https://doi.org/10.1021/ac504832c

    Article  CAS  PubMed  Google Scholar 

  23. Cho I-H, Das M, Bhandari P, Irudayaraj J (2015) High performance immunochromatographic assay combined with surface enhanced Raman spectroscopy. Sens Actuators, B Chem 213:209–214. https://doi.org/10.1016/j.snb.2015.02.091

    Article  CAS  Google Scholar 

  24. Qiang LZ, Hong WC, Ting WT, Cui CC, Ying W, An NB, Ming L, Qing LJ, Lei BJ, Yuan P, Xian GZ (2013) Detection of atrazine residue in food samples by a monoclonal antibody-based enzyme-linked immunosorbent assay. Biomed Environ Sci 26(05):398–402

  25. Sadaki Y (2016) Preparation of colloidal gold particles and conjugation to protein A/G/L, IgG, F(ab')2, and streptavidin. Methods Mol Biol 1474. https://doi.org/10.1007/978-1-4939-6352-2_4

  26. Mizutani Tsuyoshi, Murai Takaaki, Nameki Hirofumi, Yoshida Tomoko, Yagi Shinya (2014) In situ ultraviolet-visible absorbance measurement during and after solution plasma sputtering for preparation of colloidal gold nanoparticles. Jpn J Appl Phys 53(11S):11RA03

    Article  Google Scholar 

  27. Feng M, Kong D, Wang W, Liu L, Song S, Xu C (2015) Development of an Immunochromatographic strip for rapid detection of Pantoea stewartii subsp. stewartii. Sensors 15(2):4291–4301

    Article  CAS  Google Scholar 

  28. Qie Z, Liu Q, Yan W, Gao Z, Meng W, Xiao R, Wang S (2019) Universal and ultrasensitive immunochromatographic assay by using an antigen as a bifunctional element and antialbumin antibody on a test line. Anal Chem 91(15):9530–9537. https://doi.org/10.1021/acs.analchem.9b00673

    Article  CAS  PubMed  Google Scholar 

  29. Shim W-B, Yang Z-Y, Kim J-Y, Choi J-G, Je J-H, Kang S-J, Kolosova AY, Eremin SA, Chung D-H (2006) Immunochromatography using colloidal gold−antibody probe for the detection of atrazine in water samples. J Agric Food Chem 54(26):9728–9734. https://doi.org/10.1021/jf0620057

    Article  CAS  PubMed  Google Scholar 

  30. Kaur J, Singh KV, Boro R, Thampi KR, Raje M, Varshney GC, Suri CR (2007) Immunochromatographic dipstick assay format using gold nanoparticles labeled protein−hapten conjugate for the detection of atrazine. Environ Sci Technol 41(14):5028–5036. https://doi.org/10.1021/es070194j

    Article  CAS  PubMed  Google Scholar 

  31. Riccarda A (2021) Paper-based biosensors: frontiers in point-of-care detection of COVID-19 Disease. Biosensors 11(4):110

    Article  Google Scholar 

  32. WeiWen HW, TrongNghia L, Minh PD, HuiHsin K, HuanCheng C, ChengChung L, Neha S, ChengKang L, WeiHung C (2021) Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors 11(9):295

    Article  Google Scholar 

  33. Gupta Y, Ghrera AS (2021) Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Archives of Microbiology 203(7):3767–3784

    Article  CAS  Google Scholar 

  34. Fabio DN, Matteo C, Simone C, Claudio B, Laura A (2021) Ten Years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors 21(15):5185

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank all the colleagues for making great efforts to this manuscript.

Funding

This work was supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 2018YFC1602904, Grant No. 2018YFC1602903) and the National Natural Science Foundation of China (Grant No. 21976210).

Author information

Authors and Affiliations

Authors

Contributions

Zhiwei Qie and Baoan Ning were in charge of performing all the laboratory work and the preparation of the manuscript. Tieqiang Sun, Zehua Xu, Xiao Liu, and Shuai Yuan provide great help in performing the laboratory work. Zongfen Chen, Zhenyu Han, Wentao Liu, Longxing Fan, and Han Yang supervised the entire work.

Corresponding authors

Correspondence to Zhiwei Qie or Baoan Ning.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tieqiang Sun and Zehua Xu are joint first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1363 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Xu, Z., Yuan, S. et al. A gold nanoparticle-based lateral flow immunoassay for atrazine point-of-care detection using a handhold scanning device as reader. Microchim Acta 189, 153 (2022). https://doi.org/10.1007/s00604-021-05146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05146-9

Keywords

Navigation