Skip to main content
Log in

Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rapid and facile method is reported for the detection of ascorbic acid using molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescence sensor. Water-soluble and biocompatible MoS2 QDs with the maximum fluorescence emission at 506 nm have been successfully synthesized by hydrothermal method and specific detection for ascorbic acid (AA) was constructed to utilize the modulation of metal ion on the fluorescence of MoS2 QDs and the affinity and specificity between the ligand and the metal ion. The fluorescence of MoS2 QDs was quenched by the irreversible static quenching of Fe3+ through the formation of a MoS2 QDs/Fe3+ complex, while the pre-existence of AA can retain the fluorescence of MoS2 QDs through the redox reaction between AA and Fe3+. Based on this principle, a good linear relationship was obtained in the AA concentration range 1 to 150 μM with a detection limit of 50 nM. The proposed fluorescent sensing strategy was proven to be highly selective, quite simple, and rapid with a requirement of only 5 min at room temperature (RT), which is particularly useful for rapid and easy analysis. Satisfactory results were obtained when applied to AA determination in fruits, beverages, and serum samples as well as AA imaging in living cells, suggesting its great potential in constructing other fluorescence detection and imaging platforms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peterkofsky B, Udenfriend S (1965) Enzymatic hydroxylation of proline in microsomal polypeptide leading to formation of collagen. P Natl A Sci 53:335–342. https://doi.org/10.1073/pnas.53.2.335

    Article  CAS  Google Scholar 

  2. Carr AC, Frei B (1999) Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 69:1086–1107. https://doi.org/10.1093/ajcn/69.6.1086

    Article  CAS  PubMed  Google Scholar 

  3. Houglum KP, Brenner DA, Chojkier M (1991) Ascorbic acid stimulation of collagen biosynthesis independent of hydroxylation. Am J Clin Nutr 54:1141S-1143S. https://doi.org/10.1093/ajcn/54.6.1141s

    Article  CAS  PubMed  Google Scholar 

  4. Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR (1981) Regulation of collagen synthesis by ascorbic acid. P Natl A Sci 78:2879–2882. https://doi.org/10.1073/pnas.78.5.2879

    Article  CAS  Google Scholar 

  5. Hansen SN, Tveden-Nyborg P, Lykkesfeldt J (2014) Does vitamin C deficiency affect cognitive development and function? Nutrients 6:3818–3846

    Article  CAS  Google Scholar 

  6. Padayatty SJ, Riordan HD, Hewitt SM, Katz A, Hoffer LJ, Levine M (2006) Intravenously administered vitamin C as cancer therapy: three cases. Can Med Assoc J 174:937–942. https://doi.org/10.1503/cmaj.050346

    Article  Google Scholar 

  7. Wei Z, Li H, Liu S, Wang W, Chen H, Xiao L, Ren C, Chen X (2019) Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal Chem 91:15477–15483. https://doi.org/10.1021/acs.analchem.9b03272

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Chen C, Ke X, Kang N, Shen Y, Liu Y, Zhou X, Wang H, Chen C, Ren L (2015) Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine–melanin hybrid system. ACS Appl Mater Inter 7:3030–3040. https://doi.org/10.1021/am5086269

    Article  CAS  Google Scholar 

  9. Frajese GV, Benvenuto M, Fantini M, Ambrosin E, Sacchetti P, Masuelli L, Giganti MG, Modesti A, Bei R (2016) Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro. Oncol Lett 11:4224–4234. https://doi.org/10.3892/ol.2016.4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levine M (1986) New concepts in the biology and biochemistry of ascorbic acid. New Engl J Med 314:892–902. https://doi.org/10.1056/nejm198604033141407

    Article  CAS  PubMed  Google Scholar 

  11. de Faria LV, Lisboa TP, de Farias DM, Araujo FM, Machado MM, de Sousa RA, Matos MAC, Muñoz RAA, Matos RC (2020) Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chem 319:126509. https://doi.org/10.1016/j.foodchem.2020.126509

    Article  CAS  PubMed  Google Scholar 

  12. Mazzara F, Patella B, Aiello G, O’Riordan A, Torino C, Vilasi A, Inguanta R (2021) Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim Acta 388:138652. https://doi.org/10.1016/j.electacta.2021.138652

    Article  CAS  Google Scholar 

  13. Ma F, Yang B, Zhao Z, Zhao Y, Pan R, Wang D, Kong Y, Chen Y, Huang G, Kong J, Mei Y (2020) Sonication-triggered rolling of Janus porous nanomembranes for electrochemical sensing of dopamine and ascorbic acid. ACS Appl Nano Mater 3:10032–10039. https://doi.org/10.1021/acsanm.0c02019

    Article  CAS  Google Scholar 

  14. Saleh Mohammadnia M, Marzi Khosrowshahi E, Naghian E, Homayoun Keihan A, Sohouli E, Plonska-Brzezinska ME, Ali Sobhani N, Rahimi-Nasrabadi M, Ahmadi F (2020) Application of carbon nanoonion-NiMoO4-MnWO4 nanocomposite for modification of glassy carbon electrode: electrochemical determination of ascorbic acid. Microchem J 159:105470. https://doi.org/10.1016/j.microc.2020.105470

    Article  CAS  Google Scholar 

  15. Turak F, Güzel R, Dinç E (2017) Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography. J Food Drug Anal 25:285–292. https://doi.org/10.1016/j.jfda.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  16. Liu K, Zhao Y, Zhang L, He M, Lin W, Sun H, Liu Z, Hu J, Wang L (2021) Biocompatible platinum nanoclusters prepared using bitter gourd polysaccharide for colorimetric detection of ascorbic acid. Biomolecules 11:647

    Article  CAS  Google Scholar 

  17. Zheng X, Lian Q, Zhou L, Jiang Y, Gao J (2021) Peroxidase mimicking of binary polyacrylonitrile-CuO nanoflowers and the application in colorimetric detection of H2O2 and ascorbic acid. ACS Sustain Chem Eng 9:7030–7043. https://doi.org/10.1021/acssuschemeng.1c00723

    Article  CAS  Google Scholar 

  18. Costa BMC, Prado AA, Oliveira TC, Bressan LP, Munoz RAA, Batista AD, da Silva JAF, Richter EM (2019) Fast methods for simultaneous determination of arginine, ascorbic acid and aspartic acid by capillary electrophoresis. Talanta 204:353–358. https://doi.org/10.1016/j.talanta.2019.06.017

    Article  CAS  PubMed  Google Scholar 

  19. Kim W-S, Dahlgren RL, Moroz LL, Sweedler JV (2002) Ascorbic acid assays of individual neurons and neuronal tissues using capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 74:5614–5620. https://doi.org/10.1021/ac025917q

    Article  CAS  PubMed  Google Scholar 

  20. Wang T, Luo H, Jing X, Yang J, Huo M, Wang Y (2021) Synthesis of fluorescent carbon dots and their application in ascorbic acid detection. Molecules 26:1246

    Article  CAS  Google Scholar 

  21. Chen J, Jiang S, Wang M, Xie X, Su X (2021) Self-assembled dual-emissive nanoprobe with metal−organic frameworks as scaffolds for enhanced ascorbic acid and ascorbate oxidase sensing. Sensor Actuat B-Chem 339:129910. https://doi.org/10.1016/j.snb.2021.129910

    Article  CAS  Google Scholar 

  22. Zhang J, Chen R, Chen Q, Hu Y, Pan S, Hu X (2021) Ratiometric fluorescent probe for ascorbic acid detection based on MnO2 nanosheets, gold nanoclusters and thiamine. Colloid Surface A 622:126605. https://doi.org/10.1016/j.colsurfa.2021.126605

    Article  CAS  Google Scholar 

  23. Liu X, Tian M, Li C, Tian F (2021) Polyvinylpyrrolidone-stabilized Pt nanoclusters as robust oxidase mimics for selective detection of ascorbic acid. Colloid Surface A 625:126985. https://doi.org/10.1016/j.colsurfa.2021.126985

    Article  CAS  Google Scholar 

  24. Ji Y, Zou X, Wang W, Wang T, Zhang S, Gong Z (2021) Co-doped S, N-carbon dots and its fluorescent film sensors for rapid detection of Cr (VI) and ascorbic acid. Microchem J 167:106284. https://doi.org/10.1016/j.microc.2021.106284

    Article  CAS  Google Scholar 

  25. Shi H, Chen L, Niu N (2021) An off-on fluorescent probe based on graphene quantum dots intercalated hydrotalcite for determination of ascorbic acid and phytase. Sensor Actuat B-Chem 345:130353. https://doi.org/10.1016/j.snb.2021.130353

    Article  CAS  Google Scholar 

  26. Yang M, Wang C, Liu E, Hu X, Hao H, Fan J (2021) A novel ascorbic acid ratiometric fluorescent sensor based on ZnCdS quantum dots embedded molecularly imprinted polymer and silica-coated CdTeS quantum dots. J Mol Liq 337:116438. https://doi.org/10.1016/j.molliq.2021.116438

    Article  CAS  Google Scholar 

  27. Song H, Zhou Y, Li Z, Zhou H, Sun F, Yuan Z, Guo P, Zhou G, Yu X, Hu J (2021) Inner filter effect between upconversion nanoparticles and Fe(ii)–1,10-phenanthroline complex for the detection of Sn(ii) and ascorbic acid (AA). RSC Adv 11:17212–17221. https://doi.org/10.1039/D1RA01925B

    Article  CAS  Google Scholar 

  28. James Singh K, Ahmed T, Gautam P, Sadhu AS, Lien D-H, Chen S-C, Chueh Y-L, Kuo H-C (2021) Recent advances in two-dimensional quantum dots and their applications. Nanomaterials 11:1549

    Article  Google Scholar 

  29. Xu Y, Wang X, Zhang WL, Lv F, Guo S (2018) Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 47:586–625. https://doi.org/10.1039/C7CS00500H

    Article  CAS  PubMed  Google Scholar 

  30. Buzaglo M, Shtein M, Regev O (2016) Graphene quantum dots produced by microfluidization. Chem Mater 28:21–24. https://doi.org/10.1021/acs.chemmater.5b03301

    Article  CAS  Google Scholar 

  31. Rajabi HR, Shamsipur M, Khosravi AA, Khani O, Yousefi MH (2013) Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim Acta A 107:256–262. https://doi.org/10.1016/j.saa.2013.01.045

    Article  CAS  Google Scholar 

  32. Shamsipur M, Rajabi HR (2014) Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng, C 36:139–145. https://doi.org/10.1016/j.msec.2013.12.001

    Article  CAS  Google Scholar 

  33. Hemmateenejad B, Shamsipur M, Samari F, Rajabi HR (2015) Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots. J Iran Chem Soc 12:1729–1738. https://doi.org/10.1007/s13738-015-0647-3

    Article  CAS  Google Scholar 

  34. Khani O, Rajabi HR, Yousefi MH, Khosravi AA, Jannesari M, Shamsipur M (2011) Synthesis and characterizations of ultra-small ZnS and Zn(1–x)FexS quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin. Spectrochim Acta A 79:361–369. https://doi.org/10.1016/j.saa.2011.03.025

    Article  CAS  Google Scholar 

  35. Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136. https://doi.org/10.1002/adfm.201403863

    Article  CAS  Google Scholar 

  36. Jeong S, Yoo D, Jang J-t, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134:18233–18236. https://doi.org/10.1021/ja3089845

    Article  CAS  PubMed  Google Scholar 

  37. Guo X, Huang J, Zeng Q, Wei Y, Liu X, Wang L (2019) Boronic acid-functionalized molybdenum disulfide quantum dots for the ultrasensitive analysis of dopamine based on synergistic quenching effects from IFE and aggregation. J Mater Chem B 7:2799–2807. https://doi.org/10.1039/C9TB00019D

    Article  CAS  PubMed  Google Scholar 

  38. Sharma P, Mehata MS (2020) Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium. Opt Mater 100:109646. https://doi.org/10.1016/j.optmat.2019.109646

    Article  CAS  Google Scholar 

  39. Cao H, Dong W, Wang T, Shi W, Fu C, Wu Y (2020) Aptasensor based on MoS2 quantum dots with upconversion fluorescence for microcystin-LR detection via the inner filter effect. ACS Sustain Chem Eng 8:10939–10946. https://doi.org/10.1021/acssuschemeng.0c03388

    Article  CAS  Google Scholar 

  40. Zhong Y, Xue F, Wei P, Li R, Cao C, Yi T (2018) Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale 10:21298–21306. https://doi.org/10.1039/C8NR05549A

    Article  CAS  PubMed  Google Scholar 

  41. Zhong Y, Yi T (2019) MoS2 quantum dots as a unique fluorescent “turn-off–on” probe for the simple and rapid determination of adenosine triphosphate. J Mater Chem B 7:2549–2556. https://doi.org/10.1039/C9TB00191C

    Article  CAS  PubMed  Google Scholar 

  42. Desai ML, Jha S, Basu H, Saha S, Singhal RK, Kailasa SK (2020) Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: sensing of Cr3+ ion and cellular imaging. Mat Sci Eng C 111:110778. https://doi.org/10.1016/j.msec.2020.110778

    Article  CAS  Google Scholar 

  43. Hu L, Zhang Q, Gan X, Yin W, Fu W (2018) Switchable fluorescence of MoS2 quantum dots: a multifunctional probe for sensing of chromium(VI), ascorbic acid, and alkaline phosphatase activity. Anal Bioanal Chem 410:7551–7557. https://doi.org/10.1007/s00216-018-1374-2

    Article  CAS  PubMed  Google Scholar 

  44. Lin T-W, Dhenadhayalan N, Lee H-L, Lin Y-T, Lin K-C, Chang AHH (2019) Fluorescence turn-on chemosensors based on surface-functionalized MoS2 quantum dots. Sensor Actuat B-Chem 281:659–669. https://doi.org/10.1016/j.snb.2018.11.009

    Article  CAS  Google Scholar 

  45. Wu Q, Wang X, Jiang Y, Sun W, Wang C, Yang M, Zhang C (2018) MoS2-QD-based dual-model photoluminescence sensing platform for effective determination of Al3+ and Fe3+ simultaneously in various environment. ChemistrySelect 3:2326–2331. https://doi.org/10.1002/slct.201702193

    Article  CAS  Google Scholar 

  46. Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable Fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 11:4158–4164. https://doi.org/10.1002/smll.201500208

    Article  CAS  PubMed  Google Scholar 

  47. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Edit 49:4059–4062. https://doi.org/10.1002/anie.201000009

    Article  CAS  Google Scholar 

  48. Roushani M, Shamsipur M, Rajabi HR (2014) Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode. J Electroanal Chem 712:19–24. https://doi.org/10.1016/j.jelechem.2013.08.027

    Article  CAS  Google Scholar 

  49. Shamsipur M, Reza Rajabi H, Khani O (2013) Pure and Fe3+-doped ZnS quantum dots as novel and efficient nanophotocatalysts: synthesis, characterization and use for decolorization of Victoria blue R. Mat Sci Semicon Proc 16:1154–1161. https://doi.org/10.1016/j.mssp.2013.02.010

    Article  CAS  Google Scholar 

  50. Karimi F, Rajabi HR, Kavoshi L (2019) Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: study of capping agent effect on photocatalytic activity. Ultrason Sonochem 57:139–146. https://doi.org/10.1016/j.ultsonch.2019.05.019

    Article  CAS  PubMed  Google Scholar 

  51. Rajabi HR, Farsi M (2015) Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization. J Mol Catal A- Chem 399:53–61. https://doi.org/10.1016/j.molcata.2015.01.029

    Article  CAS  Google Scholar 

  52. Rajabi HR, Arjmand H, Kazemdehdashti H, Farsi M (2016) A comparison investigation on photocatalytic activity performance and adsorption efficiency for the removal of cationic dye: quantum dots vs. magnetic nanoparticles. J Environ Chem Eng 4:2830–2840. https://doi.org/10.1016/j.jece.2016.05.029

    Article  CAS  Google Scholar 

  53. Rajabi HR, Karimi F, Kazemdehdashti H, Kavoshi L (2018) Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media. J Photoch Photobio B 181:98–105. https://doi.org/10.1016/j.jphotobiol.2018.02.016

    Article  CAS  Google Scholar 

  54. Rajabi HR, Shahrezaei F, Farsi M (2016) Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J Mater Sci-Mater El 27:9297–9305. https://doi.org/10.1007/s10854-016-4969-4

    Article  CAS  Google Scholar 

  55. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170. https://doi.org/10.1021/bi00745a020

    Article  CAS  PubMed  Google Scholar 

  56. Sauer K, Scheer H, Sauer P (1987) Förster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-PHYCOCYANIN. Photochem Photobiol 46:427–440. https://doi.org/10.1111/j.1751-1097.1987.tb04790.x

    Article  CAS  Google Scholar 

  57. Jones RM, Bergstedt TS, McBranch DW, Whitten DG (2001) Tuning of superquenching in layered and mixed fluorescent polyelectrolytes. J Am Chem Soc 123:6726–6727. https://doi.org/10.1021/ja0157797

    Article  CAS  PubMed  Google Scholar 

  58. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108:1537–1543. https://doi.org/10.1021/jp0301406

    Article  CAS  Google Scholar 

  59. Shangguan J, Huang J, He D, He X, Wang K, Ye R, Yang X, Qing T, Tang J (2017) Highly Fe3+-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal Chem 89:7477–7484. https://doi.org/10.1021/acs.analchem.7b01053

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from the Opening project of Key Laboratory of Textile Fiber and Products, Ministry of Education (Fzxw2021023), and the National Natural Science Foundation of China (52003206, 51703169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaping Zhong or Dong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 739 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Zou, Y., Yang, X. et al. Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots. Microchim Acta 189, 19 (2022). https://doi.org/10.1007/s00604-021-05124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05124-1

Keywords

Navigation