Skip to main content
Log in

Aptamer-modified magnetic SERS substrate for label-based determination of cardiac troponin I

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive label-based SERS strategy composed of magnetic bimetallic nanoparticles Fe3O4@Ag@Au, specific aptamer, and Bradford method was developed for the quantitative determination of cardiac troponin I (cTnI) in human serum. The prepared substrate with high magnetic character, signal enhancement, and uniformity exhibited significant Raman response. After the substrate was bound to the aptamer, the target protein cTnI was specifically captured, and it showed the Raman signal when the signal reporter Coomassie Brilliant Blue G-250 (CBBG) was supplied. The Raman signal intensity at 1621 cm−1 showed a wide linear relationship with the log value of the cTnI concentration in the range 0.01 to 100 ng·mL−1, and the estimated limit of detection (LOD) was 5.50 pg·mL−1. The recovery and relative standard deviation (RSD) of the spike experiment in human serum samples were 92–115% and 7.4–12.7%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu R, Ye X, Cui T (2020) Recent progress of biomarker detection sensors. Research Wash D C 2020:7949037. https://doi.org/10.34133/2020/7949037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang J, Chen X, Fu X, Li Z, Huang Y, Liang C (2021) Advances in aptamer-based biomarker discovery. Front Cell Dev Biol 9:659760. https://doi.org/10.3389/fcell.2021.659760

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dawn C, Gillian H, Daniel W, Oliver TJ, Adam D, Aidan H, Eve A, Rebecca C, John W (2017) A quantitative immunoassay for lung cancer biomarker CIZ1b in patient plasma. Clin Biochem 50(6):336–343. https://doi.org/10.1016/j.clinbiochem.2016.11.015

    Article  CAS  Google Scholar 

  4. Li XY, Wang XC, Sun T et al (2021) S100A1 is a sensitive and specific cardiac biomarker for early diagnosis and prognostic assessment of acute myocardial infarction measured by chemiluminescent immunoassay. Clin Chim Acta 516:71–76. https://doi.org/10.1016/j.cca.2021.01.006

    Article  CAS  PubMed  Google Scholar 

  5. Corey D, Milan M, Elain F (2020) Rational design and characterization of a lateral flow assay for canine C-reactive protein in wound exudate. Talanta 220:121319. https://doi.org/10.1016/j.talanta.2020.121319

    Article  CAS  Google Scholar 

  6. Alain VG, Fernado C, Mirjana Č et al (2020) Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 17(4):257–273. https://doi.org/10.1080/14789450.2020.1763174

    Article  CAS  Google Scholar 

  7. Sayali U, Ambalika T, Shalini P (2018) Cardiac troponin biosensors: where are we now? Adv Health Care Technol 4:1–13. https://doi.org/10.2147/AHCT.S138543

    Article  Google Scholar 

  8. Feng SN, Yan MX, Xue Y et al (2021) Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal Chem 93:13572–13579. https://doi.org/10.1021/acs.analchem.1c02636

    Article  CAS  PubMed  Google Scholar 

  9. Sun DP, Lin XG, Lu J et al (2019) DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens Bioelectron 142:111578. https://doi.org/10.1016/j.bios.2019.111578

    Article  CAS  PubMed  Google Scholar 

  10. Han KD, Li GD, Tian LG et al (2021) Multifunctional peptide-oligonucleotide conjugate promoted sensitive electrochemical biosensing of cardiac troponin I. Biochem Eng J 174:108104. https://doi.org/10.1016/j.bej.2021.108104

    Article  CAS  Google Scholar 

  11. Shan M, Li M, Qiu XY et al (2014) Sensitive electrogenerated chemiluminescence peptide-based biosensor for the determination of troponin I with gold nanoparticles amplification. Gold Bull 47(1–2):57–64. https://doi.org/10.1007/s13404-013-0113-x

    Article  CAS  Google Scholar 

  12. Zhu LP, Ye J, Yan MG et al (2019) Electrochemiluminescence immunosensor based on Au nanocluster and hybridization chain reaction signal amplification for ultrasensitive detection of cardiac troponin I. ACS Sensors 4:2778–2785. https://doi.org/10.1021/acssensors.9b01369

    Article  CAS  PubMed  Google Scholar 

  13. Remya R, Syeda KS, Mohammad HA (2021) Fluorescent immunoassays for detection and quantification of cardiac troponin I: a short review. Molecules 26:4812. https://doi.org/10.3390/molecules26164812

    Article  CAS  Google Scholar 

  14. Wang XJ, Wang XY, Han Y et al (2019) Immunoassay for cardiac troponin I with fluorescent signal amplification by hydrolyzed coumarin released from a metal-organic framework. ACS Appl Nano Mater 2:7170–7177. https://doi.org/10.1021/acsanm.9b01685

    Article  CAS  Google Scholar 

  15. Wang JJ, Xu CX, Lei ML et al (2021) Microcavity-based SERS chip for ultrasensitive immune detection of cardiac biomarkers. Microchem J 171:106875. https://doi.org/10.1016/j.microc.2021.106875

    Article  CAS  Google Scholar 

  16. Fu JT, Lai HS, Zhang ZM, Li GK (2021) UiO-66 metal-organic frameworks/gold nanoparticles based substrates for SERS analysis of food samples. Anal Chim Acta 1161:338464. https://doi.org/10.1016/j.aca.2021.338464

    Article  CAS  PubMed  Google Scholar 

  17. Wang XM, Ma L, Hu CM et al (2021) Simultaneous quantitative detection of IL-6 and PCT using SERS magnetic immunoassay with sandwich structure. Nanotechnology 32(25):255702. https://doi.org/10.1088/1361-6528/abee48

    Article  CAS  Google Scholar 

  18. Engin E, Ana SI, Alessandro S et al (2021) Metal nanoparticles/MoS2 surface-enhanced raman scattering-based sandwich immunoassay for α-Fetoprotein detection. ACS Appl Mater Interfaces 13(7):8823–8831. https://doi.org/10.1021/acsami.0c22203

    Article  CAS  Google Scholar 

  19. Richard F, Jang WG, Kim JH, Jeremy DD (2021) Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics. Talanta 223(2):121739. https://doi.org/10.1016/j.talanta.2020.121739

    Article  CAS  Google Scholar 

  20. Muhammad M, Huang Q (2021) A review of aptamer-based SERS biosensors: design strategies and applications. Talanta 227:122188. https://doi.org/10.1016/j.talanta.2021.122188

    Article  CAS  PubMed  Google Scholar 

  21. Yang LY, Fu CC, Wang HL et al (2017) Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling. Anal Bioanal Chem 409:235–242. https://doi.org/10.1007/s00216-016-9992-z

    Article  CAS  PubMed  Google Scholar 

  22. Zhao PN, Liu HY, Zhu PH et al (2021) Multiple cooperative amplification paper SERS aptasensor based on AuNPs/3D succulent-like silver for okadaic acid quantization. Sens Actuators, B Chem 344:130174. https://doi.org/10.1016/j.snb.2021.130174

    Article  CAS  Google Scholar 

  23. He Y, Wang Y, Yang X, Xie S, Yuan R, Chai Y (2016) Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-Terminal pro-brain natriuretic peptide. ACS Appl Mater Interfaces 8(12):7683–7690. https://doi.org/10.1021/acsami.6b01112

    Article  CAS  PubMed  Google Scholar 

  24. Das A, Choi N, Moon J-I, Choo J (2021) Determination of total iron-binding capacity of transferrin using metal organic framework-based surface-enhanced Raman scattering spectroscopy. J Raman Spectrosc 52:506–515. https://doi.org/10.1002/jrs.6002

    Article  CAS  Google Scholar 

  25. Cheng ZY, Wang R, Xing YL (2019) SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst 144(22):6553–6540. https://doi.org/10.1039/C9AN01260E

    Article  Google Scholar 

  26. Erica B, Anh ML, Crystal H (2017) Coomassie Brilliant Blue G-250 Dye: an application for forensic fingerprint analysis. Anal Chem 89(7):4314–4319. https://doi.org/10.1021/acs.analchem.7b00510

    Article  CAS  Google Scholar 

  27. Han XX, Chen L, Guo J, Zhao B, Ozaki Y (2010) Coomassie Brilliant Dyes as surface-enhanced raman scattering probes for protein−ligand recognitions. Anal Chem 82(10):4102–4106. https://doi.org/10.1021/ac100202w

    Article  CAS  PubMed  Google Scholar 

  28. Hu PP, Liu H, Zhan L (2015) Coomassie brilliant blue R-250 as a new surface-enhanced Raman scattering probe for prion protein through a dual-aptamer mechanism. Talanta 139:35–39. https://doi.org/10.1016/j.talanta.2014.12.050

    Article  CAS  PubMed  Google Scholar 

  29. Cui KX, Yan B, Xie YJ (2018) Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes. J Hazard Mater 350:66–75. https://doi.org/10.1016/j.jhazmat.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  30. Zhu J, Chen XH, Li JJ, Zhao JW (2018) The synthesis of Ag-coated tetrapod gold nanostars and the improvement of surface-enhanced Raman scattering. Spectrochim Acta Part A Mol Biomol Spectrosc 211:154–165. https://doi.org/10.1016/j.saa.2018.12.001

    Article  CAS  Google Scholar 

  31. Huang ZP, Zhang R, Chen H (2019) Sensitive polydopamine bi-functionalized SERS immunoassay for microalbuminuria detection. Biosens Bioelectron 142:111542. https://doi.org/10.1016/j.bios.2019.111542

    Article  CAS  PubMed  Google Scholar 

  32. Vladyslav M, Teresa R, Yann RL et al (2021) Electrochemical and electronic detection of biomarkers in serum: a systematic comparison using aptamer-functionalized surfaces. Anal Bioanal Chem. https://doi.org/10.1007/s00216-021-03658-0

    Article  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (Grant No. 81860633) and the Natural Science Foundation of Guangxi (Grant No. 2020GXNSFAA 297168, 2016GXNSFAA380108).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CB Lin, LJ Li, J Feng, Y Zhang, X Lin, HYX Guo, and R Li; writing (original draft preparation), CB Lin and LJ Li; writing (review and editing), CB Lin, LJ Li, J Feng, Y Zhang, X Lin, HYX Guo, and R Li. Funding acquisition, LJ Li.

Corresponding author

Correspondence to Lijun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Li, L., Feng, J. et al. Aptamer-modified magnetic SERS substrate for label-based determination of cardiac troponin I. Microchim Acta 189, 22 (2022). https://doi.org/10.1007/s00604-021-05121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05121-4

Keywords

Navigation