Skip to main content
Log in

GNP/Al-MOF nanocomposite as an efficient fiber coating of headspace solid-phase micro-extraction for the determination of organophosphorus pesticides in food samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The synthesis and utilization of a high porous nanocomposite comprising MIL-53(Al) metal–organic framework (Al-MOF) and graphene nanopowder (GNP) is reported as a fiber coating for headspace solid-phase micro-extraction (HS-SPME) of selected organophosphorus pesticides (OPPs) from apple, potato, grape juice, tomato, and river water. The adsorbed OPPs on the coated fiber were subsequently determined using GC–MS. Several parameters affecting the efficiency of extraction including time and temperature of extraction, desorption condition of extracted analytes, pH and agitation of sample solution, and salt concentration were investigated. The optimum extraction condition was achieved at 70 °C with an extraction time of 40 min, pH = 4–8, and NaCl concentration of 6.0% (w/v). The best condition of desorption were observed at 280 °C for 2.0 min under a flow of helium gas in the GC inlet. Under optimal conditions, the detection limits ranged from 0.2 to 1.5 ng g−1 and the linear ranges between 0.8 and 600 ng g−1. The proposed method showed very good repeatability with RSD values ranging from 4.5 to 7.3% (n = 5). The relative recoveries were between 88% and 109% at the spiked level of 25.0 ng g−1 for the tomato sample. The fabricated fiber exhibited good enrichment factor (62–195) at optimum condition of HS-SPME. The applied HS-SPME technique is facile, fast, and inexpensive. The thermally stable GNP/Al-MOF exhibited a high sensitivity toward OPPs. So, this nanocomposite can be considered as a sorbent for the micro-extraction of other pesticides in food.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. EU (2013) Retrieved from https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr. Accessed 2013

  2. Samsidar A, Siddiquee S, Shaarani SM (2018) A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 71:188–201. https://doi.org/10.1016/j.tifs.2017.11.011

    Article  CAS  Google Scholar 

  3. Berijani S, Assadi Y, Anbia M, Hosseini M-RM, Aghaee E (2006) Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123:1–9. https://doi.org/10.1016/j.chroma.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  4. Moinfar S, Jamil LA, Sami HZ (2020) Determination of organophosphorus pesticides in juice and water by modified continuous sample drop flow microextraction combined with gas chromatography–mass spectrometry. Food Anal Methods 13:1050–1059. https://doi.org/10.1007/s12161-020-01723-5

    Article  Google Scholar 

  5. Fontana AR, Camargo AB, Altamirano JC (2010) Coacervative microextraction ultrasound-assisted back-extraction technique for determination of organophosphates pesticides in honey samples by gas chromatography–mass spectrometry. J Chromatogr A 1217:6334–6341. https://doi.org/10.1016/j.chroma.2010.08.021

    Article  CAS  PubMed  Google Scholar 

  6. Sanagi MM, Salleh S, Ibrahim WAW et al (2013) Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compos Anal 32:155–161. https://doi.org/10.1016/j.jfca.2013.09.001

    Article  CAS  Google Scholar 

  7. Nan J, Wang J, Piao X et al (2015) Novel and rapid method for determination of organophosphorus pesticide residues in edible fungus using direct gas purge microsyringe extraction coupled on-line with gas chromatography–mass spectrometry. Talanta 142:64–71. https://doi.org/10.1016/j.talanta.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  8. Moinfar S, Khodayari A, Sohrabnezhad S, Aghaei A, Jamil LA (2020) MIL-53(Al)/Fe2O3 nanocomposite for solid-phase microextraction of organophosphorus pesticides followed by GC-MS analysis. Microchim Acta 187:1–10. https://doi.org/10.1007/s00604-020-04621-z

    Article  CAS  Google Scholar 

  9. Đurović RD, Đorđević TM, Šantrić LR, Gašić SM, Ignjatović LM (2010) Headspace solid phase microextraction method for determination of triazine and organophosphorus pesticides in soil. J Environ Sci Heal B 45:626–632. https://doi.org/10.1080/03601234.2010.502416

    Article  CAS  Google Scholar 

  10. Pang Y, Zang X, Li H et al (2020) Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating. J Hazard Mater 384:121430. https://doi.org/10.1016/j.jhazmat.2019.121430

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues FDM, Mesquita PR, De Oliveira LS et al (2011) Development of a headspace solid-phase microextraction/gas chromatography–mass spectrometry method for determination of organophosphorus pesticide residues in cow milk. Microchem J 98:56–61. https://doi.org/10.1016/j.microc.2010.11.002

    Article  CAS  Google Scholar 

  12. Matin AA, Biparva P, Gheshlaghi M, Khosrowshahi EM, Farhadi K (2020) Monolithic mixed matrix membrane based on polyethersulfone/functionalized MWCNTs nanocomposite as an SPME fiber: application to extract chlorophenols from human urine and serum samples followed by GC-ECD. J Chromatogr B 1150:122190. https://doi.org/10.1016/j.jchromb.2020.122190

    Article  CAS  Google Scholar 

  13. Ghaemi F, Amiri A, Yunus R (2014) Methods for coating solid-phase microextraction fibers with carbon nanotubes. Trends Anal Chem 59:133–143. https://doi.org/10.1016/j.trac.2014.04.011

    Article  CAS  Google Scholar 

  14. Ma TT, Shen XF, Yang C, Qian HL, Pang YH, Yan XP (2019) Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples. Talanta 201:413–418. https://doi.org/10.1016/j.talanta.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  15. Gutiérrez-Serpa A, Pacheco-Fernández I, Pasán J, Pino V (2019) Metal–organic frameworks as key materials for solid-phase microextraction devices-a review. Separations 6:47. https://doi.org/10.3390/separations6040047

    Article  CAS  Google Scholar 

  16. Fonseca J, Gong T, Jiao L, Jiang HL (2021) Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J Mater Chem A 9:10562–10611. https://doi.org/10.1039/d1ta01043c

    Article  CAS  Google Scholar 

  17. Loiseau T, Serre C, Huguenard C et al (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382. https://doi.org/10.1002/chem.200305413

    Article  CAS  PubMed  Google Scholar 

  18. Tomar S, Singh VK (2021) Review on synthesis and application of MIL-53. Mater Today Proc 43:3291–3296. https://doi.org/10.1016/j.matpr.2021.02.179

    Article  CAS  Google Scholar 

  19. Zakerian R, Bahar S (2019) Electrochemical exfoliation of pencil graphite for preparation of graphene coating as a new versatile SPME fiber for determination of polycyclic aromatic hydrocarbons by gas chromatography. Microchim Acta 186:1–7. https://doi.org/10.1007/s00604-019-3851-5

    Article  CAS  Google Scholar 

  20. Tarzanagh YJ, Seifzadeh D, Rajabalizadeh Z, Habibi-Yangjeh A, Khodayari A, Sohrabnezhad S (2019) Sol-gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion. Surf Coat Tech 380:125038. https://doi.org/10.1016/j.surfcoat.2019.125038

    Article  CAS  Google Scholar 

  21. Deng J, Zhang P, Jin T, Zhou H, Cheng J (2017) Graphene oxide/β-cyclodextrin composite as fiber coating for high efficiency headspace solid phase microextraction of organophosphate ester flame retardants in environmental water. RSC Adv 7:54475–54484. https://doi.org/10.1039/c7ra07903f

    Article  CAS  Google Scholar 

  22. Kumar R, Kushwaha N, Mittal J (2017) Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature. Sensor Actuat B Chem 244:243–251. https://doi.org/10.1016/j.snb.2016.12.111

    Article  CAS  Google Scholar 

  23. Khodayari A, Sohrabnezhad S (2021) Fabrication of MIL-53(Al)/Ag/AgCl plasmonic nanocomposite: an improved metal organic framework based photocatalyst for degradation of some organic pollutants. J Solid State Chem 297:122087. https://doi.org/10.1016/j.jssc.2021.122087

    Article  CAS  Google Scholar 

  24. Wang S, Ye B, An C, Wang J, Li Q, Guo H, Zhang J (2019) Exploring the coordination effect of GO@ MOF-5 as catalyst on thermal decomposition of ammonium perchlorate. Nanoscale Res Lett 345:1–11. https://doi.org/10.1186/s11671-019-3163-z

    Article  CAS  Google Scholar 

  25. Lieder C, Opelt S, Dyballa M, Henning H, Klemm E, Hunger M (2010) Adsorbate effect on AlO4(OH)2 centers in the metal−organic framework MIL-53 investigated by solid-state NMR spectroscopy. J Phys Chem C 114:16596–16602. https://doi.org/10.1021/jp105700b

    Article  CAS  Google Scholar 

  26. Chen T, Xu H (2019) In vivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 1090:72–81. https://doi.org/10.1016/j.aca.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  27. Bioanalytical method validation Guidance for Industry-FDA (2018) Retrieved from: www.fda.gov. Accessed 2018

  28. Shokrollahi M, Seidi S, Fotouhi L (2020) In situ electrosynthesis of a copper-based metal–organic framework as nanosorbent for headspace solid-phase microextraction of methamphetamine in urine with GC-FID analysis. Microchim Acta 187:1–10. https://doi.org/10.1007/s00604-020-04535-w

    Article  CAS  Google Scholar 

  29. Amini S, Ebrahimzdeh H, Seidi S, Jalilian N (2020) Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Microchim Acta 187:508. https://doi.org/10.1007/s00604-020-04483-5

    Article  CAS  Google Scholar 

  30. Su R, Xu X, Wang X, Li D, Li X, Zhang H, Yu A (2011) Determination of organophosphorus phase pesticides in peanut oil by dispersive solid extraction gas chromatography–mass spectrometry. J Chromatogr B 879:3423–3428. https://doi.org/10.1016/j.jchromb.2011.09.016

    Article  CAS  Google Scholar 

  31. Norman KN, Panton SH (2001) Supercritical fluid extraction and quantitative determination of organophosphorus pesticide residues in wheat and maize using gas chromatography with flame photometric and mass spectrometric detection. J Chromatogr A 907:247–255. https://doi.org/10.1016/s0021-9673(00)01081-5

    Article  CAS  PubMed  Google Scholar 

  32. Gionfriddo E, Souza-Silva ÉA, Ho TD, Anderson JL, Pawliszyn J (2018) Exploiting the tunable selectivity features of polymeric ionic liquid-based SPME sorbents in food analysis. Talanta 188:522–530. https://doi.org/10.1016/j.talanta.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  33. Wan M, Xiang F, Liu Z et al (2021) Novel Fe3O4@ metal-organic framework@ polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices. Food Chem 365:130485. https://doi.org/10.1016/j.foodchem.2021.130485

    Article  CAS  PubMed  Google Scholar 

  34. Ghorbani M, Mohammadi P, Keshavarzi M et al (2021) Simultaneous determination of organophosphorus pesticides residues in vegetable, fruit juice, and milk samples with magnetic dispersive micro solid-phase extraction and chromatographic method; recruitment of simplex lattice mixture design for optimization of novel sorbent composites. Anal Chim Acta 1178:338802. https://doi.org/10.1016/j.aca.2021.338802

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81. https://doi.org/10.1016/j.chroma.2014.10.088

    Article  CAS  PubMed  Google Scholar 

  36. Aladaghlo Z, Maddah B, Fakhari AR (2021) Fabrication of Co3O4 quantum dot incorporated polyacrylamide ethylene glycol dimethacrylate as a new fiber for solid phase microextraction and trace determination of organophosphorus pesticides in environmental water samples. Anal Methods 30:3394–3401. https://doi.org/10.1039/D1AY00855B

    Article  Google Scholar 

  37. Fernandes VC, Freitas M, Pacheco JP, Oliveira JM, Domingues VF, Delerue-Matos C (2018) Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries. J Chromatogr A 1566:1–12. https://doi.org/10.1016/j.chroma.2018.06.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the post-graduate office of Guilan University for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Sohrabnezhad.

Ethics declarations

Ethical approval

This article does not contain any studies with human or animal subjects.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.30 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodayari, A., Sohrabnezhad, S., Moinfar, S. et al. GNP/Al-MOF nanocomposite as an efficient fiber coating of headspace solid-phase micro-extraction for the determination of organophosphorus pesticides in food samples. Microchim Acta 189, 45 (2022). https://doi.org/10.1007/s00604-021-05101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05101-8

Keywords

Navigation