Skip to main content
Log in

Synthesis of metal ion–tolerant Mn-doped fluorescence silicon quantum dots with green emission and its application for selective imaging of ·OH in living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monitoring hydroxyl radical (·OH) in living cells remains a big challenge on account of its high reactivity and short half-life. In this work, we designed a fluorescent probe based on manganese-doped silicon quantum dots (Mn-SiQDs) for detecting and imaging of ·OH with good water solubility. The manganese was doped in its ethylene diamine tetra-acetic acid (EDTA) complex form and effectively improved the metal ion tolerance of fluorescence of SiQDs. And m-dihydroxybenzene was used as the reductant to extend the emission of SiQDs to the green region at 515 nm when the excitation wavelength was 424 nm. Basing on the fluorescence quenching of Mn-SiQDs, a linear response of ·OH was observed in the range 0.8–50 μM with a limit of detection (LOD) of 88.4 nM, which is lower than those reported with SiQDs. The interference from other ROS or RNS has been assessed and no impact was found. In fully aqueous systems, the Mn-SiQDs have been applied to monitor and image the endogenous ·OH in HeLa cells. Our work provided a new strategy for designing SiQDs with good biocompatibility, high selectivity and long monitoring wavelength.

Graphical abstract

Synthesis of green-emitting silicon quantum dots with N-[3 -(trimethoxysilyl) propyl] ethylenediamine (DAMO), Ethylenediamine tetraacetic acid disodium salt dehydrate (EDTA-2Na·2H2O), manganese acetate tetrahydrate (Mn(CH3COO)2·4H20) and m-dihydroxybenzene. The green fluorescence of the silicon quantum dots can be selectively quenched by hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK (2000) Kidney ischemia-reperfusion: Modulation of antioxidant defenses. Mol Cell Biochem 205:1–11. https://doi.org/10.1023/a:1007047505107

    Article  CAS  PubMed  Google Scholar 

  2. Rupec RA, Baeuerle PA (1995) The genomic response of tumor-cells to hypoxia and reoxygenation - differential activation of transcription factors AP-1 and NF-KAPPA-B. Eur J Biochem 234:632–640. https://doi.org/10.1111/j.1432-1033.1995.632_b.x

    Article  CAS  PubMed  Google Scholar 

  3. Lemar KM, Aon MA, Cortassa S, O’Rourke B, Muller CT, Lloyd D (2007) Diallyl disulphide depletes glutathione in Candida albicans: oxidative stress-mediated cell death studied by two-photon microscopy. Yeast 24:695–706. https://doi.org/10.1002/yea.1503

    Article  CAS  PubMed  Google Scholar 

  4. Fejer J, Kron I, Grulova D, Eliasova A (2020) Seasonal Variability of Juniperus communis L. Berry ethanol extracts: 1. In Vitro Hydroxyl Radical Scavenging Activity. Molecules 25. https://doi.org/10.3390/molecules25184114

  5. Soh N, Makihara K, Sakoda E, Imato T (2004) A ratiometric fluorescent probe for imaging hydroxyl radicals in living cells. Chem Commun (Camb). https://doi.org/10.1039/b314204c:496-497.

    Article  Google Scholar 

  6. Zhao QQ, Zhang R, Ye DX, Zhang S, Chen H, Kong JL (2017) Ratiometric fluorescent silicon quantum dots-Ce6 complex probe for the live cell imaging of highly reactive oxygen species. ACS Appl Mater Interfaces 9:2052–2058. https://doi.org/10.1021/acsami.6b12047

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Ma H (2016) Design principles of spectroscopic probes for biological applications. Chem Sci 7:6309–6315. https://doi.org/10.1039/c6sc02500e

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, Xu X, Song Y, Ma Y, Hu Q (2017) A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces 9:33011–33019. https://doi.org/10.1021/acsami.7b10548

    Article  CAS  PubMed  Google Scholar 

  9. Chen D, Zhuang X, Zhai J, Zheng Y, Lu H, Chen L (2018) Preparation of highly sensitive Pt nanoparticles-carbon quantum dots/ionic liquid functionalized graphene oxide nanocomposites and application for H2O2 detection. Sens Actuators, B Chem 255:1500–1506. https://doi.org/10.1016/j.snb.2017.08.156

    Article  CAS  Google Scholar 

  10. Li X, Shi H, Wang T, Zhang Y, Zuo S, Luo S, Yao C (2018) Photocatalytic removal of NO by Z-scheme mineral based heterojunction intermediated by carbon quantum dots. Appl Surf Sci 456:835–844. https://doi.org/10.1016/j.apsusc.2018.06.133

    Article  CAS  Google Scholar 

  11. Zhang P, Wang H, Zhang D, Zeng X, Zeng R, Xiao L, Tao H, Long Y, Yi P, Chen J (2018) Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells. Sens Actuators, B Chem 255:2223–2231. https://doi.org/10.1016/j.snb.2017.09.025

    Article  CAS  Google Scholar 

  12. Chen B, Fu H, Lv Y, Li X, Han Y (2018) An oxidative cyclization reaction based fluorescent “Turn-On” probe for highly selective and rapid detection of hypochlorous acid. Tetrahedron Lett 59:1116–1120. https://doi.org/10.1016/j.tetlet.2018.02.018

    Article  CAS  Google Scholar 

  13. Gai L, Mack J, Liu H, Xu Z, Lu H, Li Z (2013) A BODIPY fluorescent probe with selective response for hypochlorous acid and its application in cell imaging. Sens Actuators, B Chem 182:1–6. https://doi.org/10.1016/j.snb.2013.02.106

    Article  CAS  Google Scholar 

  14. He Y, Xu Y, Shang Y, Zheng S, Chen W, Pang Y (2018) An ESIPT-based fluorescent probe for the determination of hypochlorous acid (HClO): mechanism study and its application in cell imaging. Anal Bioanal Chem 410:7007–7017. https://doi.org/10.1007/s00216-018-1332-z

    Article  CAS  PubMed  Google Scholar 

  15. Zhu G, Huang D, Liu L, Yi Y, Wu Y, Huang Y (2020) One-step green preparation of N-doped silicon quantum dots for the on-off fluorescent determination of hydrogen peroxide. Anal Lett 53:1834–1849. https://doi.org/10.1080/00032719.2020.1720222

    Article  CAS  Google Scholar 

  16. Li Y, Zhang H, Yao Y, Gong T, Dong R, Li D, Liu Y, Lei B (2020) Promoted off-on recognition of H2O2 based on the fluorescence of silicon quantum dots assembled two-dimensional PEG-MnO2 nanosheets hybrid nanoprobe. Mikrochim Acta 187:347. https://doi.org/10.1007/s00604-020-04276-w

    Article  CAS  PubMed  Google Scholar 

  17. Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon Nanomaterials for Biosensing and Bioimaging Analysis. Front Chem 6:38. https://doi.org/10.3389/fchem.2018.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong R, Yao Y, Li D, Zhang H, Li W, Molokee M, Liu Y, Lei B (2020) Ratio fluorescent hybrid probe for visualized fluorescence detection of H2O2 in vitro and in vivo. Sens Actuators, B Chem 321. https://doi.org/10.1016/j.snb.2020.128643

  19. Liang J, Huang C, Gong X (2019) Silicon nanocrystals and their composites: syntheses, fluorescence mechanisms, and biological applications. ACS Sustainable Chemistry & Engineering 7:18213–18227. https://doi.org/10.1021/acssuschemeng.9b04359

    Article  CAS  Google Scholar 

  20. Peng F, Su YY, Zhong YL, Fan CH, Lee ST, He Y (2014) Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Accounts Chem Res 47:612–623. https://doi.org/10.1021/ar400221g

    Article  CAS  Google Scholar 

  21. Qiu M, Singh A, Wang D, Qu J, Swihart M, Zhang H, Prasad PN (2019) Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25:135–155. https://doi.org/10.1016/j.nantod.2019.02.012

    Article  CAS  Google Scholar 

  22. Li Z, Ren X, Hao C, Meng X, Li Z (2018) Silicon quantum dots with tunable emission synthesized via one-step hydrothermal method and their application in alkaline phosphatase detection. Sens Actuators, B Chem 260:426–431. https://doi.org/10.1016/j.snb.2017.12.175

    Article  CAS  Google Scholar 

  23. Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H (2015) Cu-N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew Chem Int Ed Engl 54:6540–6544. https://doi.org/10.1002/anie.201501912

    Article  CAS  PubMed  Google Scholar 

  24. Han Y, Chen Y, Feng J, Na M, Liu J, Ma Y, Ma S, Chen X (2019) Investigation of nitrogen content effect in reducing agent to prepare wavelength controllable fluorescent silicon nanoparticles and its application in detection of 2-nitrophenol. Talanta 194:822–829. https://doi.org/10.1016/j.talanta.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  25. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee ST, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135:8350–8356. https://doi.org/10.1021/ja4026227

    Article  CAS  PubMed  Google Scholar 

  26. Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG (2016) One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem 88:10474–10481. https://doi.org/10.1021/acs.analchem.6b02448

    Article  CAS  PubMed  Google Scholar 

  27. Pang L-F, Wu H, Fu M-J, Guo X-F, Wang H (2019) Red emissive boron and nitrogen co-doped “on-off-on” carbon dots for detecting and imaging of mercury(II) and biothiols. MicrochimActa 186. https://doi.org/10.1007/s00604-019-3852-4

  28. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5. https://doi.org/10.1039/c3nr04402e

  29. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem 89:3001–3008. https://doi.org/10.1021/acs.analchem.6b04509

    Article  CAS  PubMed  Google Scholar 

  30. Geng X, Li Z, Hu Y, Liu H, Sun Y, Meng H, Wang Y, Qu L, Lin Y (2018) One-Pot Green Synthesis of Ultrabright N-Doped Fluorescent Silicon Nanoparticles for Cellular Imaging by Using Ethylenediaminetetraacetic Acid Disodium Salt as an Effective Reductant. ACS Appl Mater Interfaces 10:27979–27986. https://doi.org/10.1021/acsami.8b09242

    Article  CAS  PubMed  Google Scholar 

  31. Yang X, Feng Y, Zhu S, Luo Y, Zhuo Y, Dou Y (2014) One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution. Anal Chim Acta 847:49–54. https://doi.org/10.1016/j.aca.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Jiang Y, Chen S, Zhao Q, Zhang Y, Wang W, Sun Y, Ma P, Song D, Wang X (2020) A simple and sensitive assay of alkaline phosphatase activity in serum by fluorescent silicon nanoparticles based on inner filter effect. Sens Actuators, B Chem 307. https://doi.org/10.1016/j.snb.2019.127589

  33. Wang J, Li R, Long X, Li Z (2016) Synthesis of imidazole-functionalized silicon quantum dots as “off-on” fluorescence probe for highly selective and sensitive detection of l-histidine. Sens Actuators, B Chem 237:740–748. https://doi.org/10.1016/j.snb.2016.06.157

    Article  CAS  Google Scholar 

  34. Zhuang M, Ding C, Zhu A, Tian Y (2014) Ratiometric fluorescence probe for monitoring hydroxyl radical in live cells based on gold nanoclusters. Anal Chem 86:1829–1836. https://doi.org/10.1021/ac403810g

    Article  CAS  PubMed  Google Scholar 

  35. Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86:12206–12213. https://doi.org/10.1021/ac503215z

    Article  CAS  PubMed  Google Scholar 

  36. Hai X, Guo Z, Lin X, Chen X, Wang J (2018) Fluorescent TPA@GQDs Probe for sensitive assay and quantitative imaging of hydroxyl radicals in living cells. ACS Appl Mater Interfaces 10:5853–5861. https://doi.org/10.1021/acsami.7b16094

    Article  CAS  PubMed  Google Scholar 

  37. Huang Z, Ying P, Huang L, Xu Q, Hu X-Y (2019) Molecularly imprinted polymer functionalized reduced graphene oxide: a new platform for the detection of hydroxyl radicals in the atmosphere. Anal Methods 11:5126–5133. https://doi.org/10.1039/c9ay01414d

    Article  CAS  Google Scholar 

  38. Bai X, Huang Y, Lu M, Yang D (2017) HKOH-1: a highly sensitive and selective fluorescent probe for detecting endogenous hydroxyl radicals in living cells. Angew Chem Int Ed Engl 56:12873–12877. https://doi.org/10.1002/anie.201705873

    Article  CAS  PubMed  Google Scholar 

  39. Liu F, Du J, Song D, Xu M, Sun G (2016) A sensitive fluorescent sensor for the detection of endogenous hydroxyl radicals in living cells and bacteria and direct imaging with respect to its ecotoxicity in living zebra fish. Chem Commun (Camb) 52:4636–4639. https://doi.org/10.1039/c5cc10658c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Large-Scale Instrument and Equipment Sharing Foundation of Wuhan University for the support.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21777126 and 32070398, Beijing, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional information and figures are listed in the supplementary information.

Supplementary File 1 (DOCX 1.5 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YC., Pang, LF., Guo, XF. et al. Synthesis of metal ion–tolerant Mn-doped fluorescence silicon quantum dots with green emission and its application for selective imaging of ·OH in living cells. Microchim Acta 189, 60 (2022). https://doi.org/10.1007/s00604-021-05082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05082-8

Keywords

Navigation