Skip to main content
Log in

Ionic liquid-based dispersive liquid–liquid microextraction followed by magnetic solid-phase extraction for determination of quinolones

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ionic liquid-based dispersive liquid–liquid microextraction (IL-DLLME) combined with magnetic solid-phase extraction (MSPE) was developed for extraction of quinolones (quinolones) from honey and milk prior to high-performance liquid chromatography (HPLC) analysis. 1-Butyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent and an effective adsorbent based on chitosan modified magnetic core–shell functionalized multi-walled carbon nanotube (MWCNTs-Fe3O4@SiO2-CS) nanoparticles was used to assist IL to adsorb quinolone residues in honey and milk samples. Extraction conditions were optimized through one-factor-at-a-time and response surface methodology using a Box-Behnken design. Under optimum conditions satisfactory linearity (R2 > 0.999) and high sensitivity (method limits of quantification were 4–8 μg kg−1 or μg L−1 in honey or milk samples) was achieved. The recoveries of quinolones in honey and milk ranged from 81.2 to 109%. Based on this study, the proposed method was employed for the determination of antibiotic residues in honey and milk samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hernández-Arteseros JA, Barbosa J, Compano R, Prat MD (2002) Analysis of quinolone residues in edible animal products. J Chromatogr A 945:1–24. https://doi.org/10.1016/S0021-9673(01)01505-9

    Article  PubMed  Google Scholar 

  2. Jin Y, Zhang J, Zhao W, Zhang W, Wang L, Zhou J, Li Y (2017) Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry. Food Chem 221:1298–1307. https://doi.org/10.1016/j.foodchem.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  3. Pereira PC (2014) Milk nutritional composition and its role in human health. Nutrition 30:619–627. https://doi.org/10.1016/j.nut.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  4. Cui X, Zhang P, Yang X, Yang M, Zhou W, Zhang S, Gao H, Lu R (2015) β-CD/ATP composite materials for use in dispersive solid-phase extraction to measure (fluoro) quinolone antibiotics in honey samples. Anal Chim Acta 878:131–139. https://doi.org/10.1016/j.aca.2015.03.056

    Article  CAS  PubMed  Google Scholar 

  5. Zayas-Blanco FD, Garcı́a-Falcón MS, Simal-Gándara J (2004) Determination of sulfamethazine in milk by solid phase extraction and liquid chromatographic separation with ultraviolet detection. Food Control 15:375–378. https://doi.org/10.1016/S0956-7135(03)00100-2

    Article  CAS  Google Scholar 

  6. Zhao B, Wu H, Liu Y, Tian X, Huo Y, Guan S (2019) Magnetic solid-phase extraction based on g-C3N4/Fe3O4/MoS2 as a magnetic adsorbent for HPLC-UV determination of fluoroquinolones in chicken and eggs. Anal Methods 11:1491–1499. https://doi.org/10.1039/C9AY00208A

    Article  CAS  Google Scholar 

  7. Rodríguez-Díaz RC, Fernández-Romero JM, Aguilar-Caballos MP, Gómez-Hens A (2006) Chromatographic determination of flumequine in food samples by post-column derivatisation with terbium(III). Anal Chim Acta 578:220–226. https://doi.org/10.1016/j.aca.2006.06.068

    Article  CAS  PubMed  Google Scholar 

  8. Chung H, Lee J, Chung Y, Lee K (2009) Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using mi-crobial assays and high performance liquid chromatography. Food Chem 113:297–301. https://doi.org/10.1016/j.foodchem.2008.07.021

    Article  CAS  Google Scholar 

  9. Tayeb-Cherif K, Peris-Vicente J, Carda-Broch S, Esteve-Romero J (2016) Use of micellar liquid chromatography to analyze oxolinic acid, flumequine, marbofloxacin and enrofloxacin in honey and validation according to the 2002/657/EC decision. Food Chem 202:316–323. https://doi.org/10.1016/j.foodchem.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  10. Liu XM, Feng SY, Zhou P, Chen YQ, Zhang H, Chen W (2013) Simultaneous determination of danofloxacin and flumequine in milk based on fluorescence spectroscopy and chemometrics tools food. Anal Methods 6:1739–1749. https://doi.org/10.1007/s12161-013-9702-9

    Article  Google Scholar 

  11. Jin T, Wu H, Gao NN, Chen XD, Lai HJ, Zheng JF, Du LM (2016) Extraction of quinolones from milk samples using bentonite/magnetite nanoparticles before determination by high-performance liquid chromatography with fluorimetric detection. J Sep Sci 39:545–551. https://doi.org/10.1002/jssc.201500856

    Article  CAS  PubMed  Google Scholar 

  12. Junza A, Dorival-García N, Zafra-Gómez A, Barrón D, Ballesteros O, Barbosa J, Navalón A (2014) Multiclass method for the determination of quinolones and β-lactams, in raw cow milk using dispersive liquid-liquid microextraction and ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1356:10–22. https://doi.org/10.1016/j.chroma.2014.06.034

    Article  CAS  PubMed  Google Scholar 

  13. Parrilla Vázquez MM, Parrilla Vázquez P, Martínez Galera M, Gil García MD, Uclés A (2013) Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction coupled with liquid chromatography-quadrupole-linear ion trap-mass spectrometry for simultaneous analysis of pharmaceuticals in wastewaters. J Chromatogr A 1219:19–26. https://doi.org/10.1016/j.chroma.2013.03.066

    Article  CAS  Google Scholar 

  14. Xu S, Jiang C, Lin YX, Jia L (2012) Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones. Microchem Acta 179:257–264. https://doi.org/10.1007/s00604-012-0894-2

    Article  CAS  Google Scholar 

  15. Xu JJ, An M, Yang R, Tan Z, Hao J, Cao J, Peng LQ, Cao W (2016) Determination of tetracycline antibiotic residues in honey and milk by miniaturized solid phase extraction using chitosan-modified graphitized multiwalled carbon nanotubes. J Agr Food Chem 64:2647–2654. https://doi.org/10.1021/acs.jafc.6b00748

    Article  CAS  Google Scholar 

  16. Yuan XC, Li XH, Guo P, Xiong ZL, Zhao LS (2018) Simultaneous enantiomeric analysis of chiral non-steroidal anti-inflammatory drugs in water, river sediment and sludge by chiral liquid chromatography-tandem mass spectrometry. Anal Methods 10:4404–4413. https://doi.org/10.1039/C8AY01417E

    Article  CAS  Google Scholar 

  17. Zarnegar Z, Safari J (2015) The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications. Int J Biol Macromol 75:21–31. https://doi.org/10.1016/j.ijbiomac.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  18. Shi ZG, Lee HK (2010) Dispersive liquid-liquid microextraction coupled with dispersive µ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal Chem 82:1540–1545. https://doi.org/10.1021/ac9023632

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Xu J, Cong J, Cai Z, Zhang J, Wang J, Ren Y (2018) Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk. J Chromatogr A 1532:20–29. https://doi.org/10.1016/j.chroma.2017.11.050

    Article  CAS  PubMed  Google Scholar 

  20. Gao F, Hu Y, Ye X, Li J, Chen Z, Fan G (2013) Optimal extraction and fingerprint analysis of Cnidii fructus by accelerated solvent extraction and high performance liquid chromatographic analysis with photodiode array and mass spectrometry detections. Food Chem 141:1962–1971. https://doi.org/10.1016/j.foodchem.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  21. Tang W, Zeng G, Gong J, Liu Y, Wang X, Liu Y, Liu Z, Chen L, Zhang X, Tu D (2012) Simultaneous adsorption of atrazine and Cu(II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J 211–212:470–478. https://doi.org/10.1016/j.cej.2012.09.102

    Article  CAS  Google Scholar 

  22. Tiwari A, Dhakate SR (2009) Chitosan-SiO2-multiwall carbon nanotubes nanocomposite: a novel matrix for the immobilization of creatine amidinohydrolase. Int J Biol Macromol 44:408–412. https://doi.org/10.1016/j.ijbiomac.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Sadeghi S, Olieaei S (2019) Nanostructured polyaniline based pipette tip solid phase extraction coupled with high-performance liquid chromatography for the selective determination of trace levels of three sulfonamides in honey and milk samples with the aid of experimental design methodology. Microchem J 146:974–985. https://doi.org/10.1016/j.microc.2019.02.020

    Article  CAS  Google Scholar 

  24. Kong L, Lu X, Zhang W (2008) Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J Solid State Chem 181:628–636. https://doi.org/10.1016/j.jssc.2008.01.006

    Article  CAS  Google Scholar 

  25. Zhou LX, Pan SD, Chen XH, Zhao YG, Zou BB, Jin MC (2014) Kinetics and thermodynamics studies of pentachlorophenol adsorption on covalently functionalized Fe3O4@SiO2-MWCNTs core-shell magnetic microspheres. Chem Eng J 257:10–19. https://doi.org/10.1016/j.cej.2014.07.060

    Article  CAS  Google Scholar 

  26. Ning J, Zhang J, Pan Y, Guo J (2003) Fabrication and thermal property of carbon nanotube/SiO2 composites. J Mater Sci 22:1019–1021. https://doi.org/10.1023/A:1024745526978

    Article  CAS  Google Scholar 

  27. Lu N, He X, Wang T, Liu S, Hou X (2018) Magnetic solid-phase extraction using MIL-101(Cr)-based composite combined with dispersive liquid-liquid microextraction based on solidification of a floating organic droplet for the determination of pyrethroids in environmental water and tea samples. Microchem J 137:449–455. https://doi.org/10.1016/j.microc.2017.12.009

    Article  CAS  Google Scholar 

  28. Wang Y, Zhang J, Huang X, Yuan D (2014) Preparation of stir cake sorptive extraction based on polymeric ionic liquid for the enrichment of benzimidazole anthelmintics in water, honey and milk samples. Anal Chim Acta 840:33–41. https://doi.org/10.1016/j.aca.2014.06.039

    Article  CAS  PubMed  Google Scholar 

  29. Di X, Wang X, Liu Y, Guo X, Di X (2019) Dissolvable layered double hydroxide as a sorbent in dispersive micro-solid phase extraction for the determination of acidic quinolones in honey by HPLC. J Sep Sci 42:2255–2262. https://doi.org/10.1002/jssc.201801009

    Article  CAS  PubMed  Google Scholar 

  30. Bohm DA, Stachel CS, Gowik P (2012) Validation of a multi-residue method for the determination of several antibiotic groups in honey by LC-MS/MS. Anal Bioanal Chem 403:2943–2953. https://doi.org/10.1007/s00216-012-5868-z

    Article  CAS  PubMed  Google Scholar 

  31. Ibarra IS, Rodriguez JA, Páez-Hernández ME, Santos EM, Miranda JM (2012) Determination of quinolones in milk samples using a combination of magnetic solid-phase extraction and capillary electrophoresis. Electrophoresis 33:2041–2048. https://doi.org/10.1002/elps.201100559

    Article  CAS  PubMed  Google Scholar 

  32. Chung HH, Lee JB, Chung YH, Lee KG (2009) Analysis of sulfonamide and quinolone antibiotic residues in Korean milk using microbial assays and high performance liquid chromatography. Food Chem 113:297–301. https://doi.org/10.1016/j.foodchem.2008.07.021

    Article  CAS  Google Scholar 

  33. Gao S, Jin H, You J, Ding Y, Zhang N, Wang Y, Ren R, Zhang R, Zhang H (2011) Ionic liquid-based homogeneous liquid-liquid microextraction for the determination of antibiotics in milk by high-performance liquid chromatography. J Chromatogr A 1218:7254–7263. https://doi.org/10.1016/j.chroma.2011.08.063

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Liu Y, Wei S, Yao S, Zhang J, Huang H (2016) Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis. Anal Bioanal Chem 408:589–598. https://doi.org/10.1007/s00216-015-9140-1

    Article  CAS  PubMed  Google Scholar 

  35. Zheng H, Mo J, Zhang Y, Gao Q, Ding J, Yu QW, Feng Y (2014) Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples. J Chromatogr A 1329:17–23. https://doi.org/10.1016/j.chroma.2013.12.083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Hainan Provincial Philosophy and Social Science Planning Project (HNSK(YB)20-64), the Middle-aged Backbone Personnel Training Program of Shenyang Pharmaceutical University (ZQN2016011), Scientific Research Fund of Liaoning Provincial Education Department (2020LZD02), Inter-school Cooperation Project of General Undergraduate Universities in Liaoning Province (2020-181), and Project of Shenyang Key Laboratory of Functional Drug Carrier Materials (19-110-4-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longshan Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Liu, X., Yang, X. et al. Ionic liquid-based dispersive liquid–liquid microextraction followed by magnetic solid-phase extraction for determination of quinolones. Microchim Acta 189, 8 (2022). https://doi.org/10.1007/s00604-021-05077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05077-5

Keywords

Navigation