Skip to main content

Advertisement

Log in

Paper-based lateral flow assay using rhodamine B–loaded polymersomes for the colorimetric determination of synthetic cannabinoids in saliva

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Synthetic cannabinoids are one of the many substances of abuse widely spreading in modern society. Medical practitioners and law enforcement alike highly seek portable, efficient, and reliable tools for on-site detection and diagnostics. Here, we propose a colorimetric lateral flow assay (LFA) combined with dye-loaded polymersome to detect the synthetic cannabinoid JWH-073 efficiently. Rhodamine B–loaded polymersome was conjugated to antibodies and fully characterized. Two LFA were proposed (sandwich and competitive), showing a high level of sensitivity with a limit of detection (LOD) reaching 0.53 and 0.31 ng/mL, respectively. The competitive assay was further analyzed by fluorescence, where the LOD reached 0.16 ng/mL. The application of the LFA over spiked synthetic saliva or real human saliva demonstrated an overall response of 94% for the sandwich assay and 97% for the competitive LFA. The selectivity of the system was assessed in the presence of various interferents. The analytical performance of the LFA system showed a coefficient of variation below 6%. The current LFA system appears as a plausible system for non-invasive detection of substance abuse and shows promise for synthetic cannabinoid on-site sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are included in the current manuscript. Raw data are available upon request.

Code availability

Not applicable.

References

  1. Ralphs R, Williams L, Askew R, Norton A (2017) Adding spice to the porridge: the development of a synthetic cannabinoid market in an English prison. Int J Drug Policy 40:57–69. https://doi.org/10.1016/j.drugpo.2016.10.003

    Article  PubMed  Google Scholar 

  2. Fojtikova L, Sulakova A, Blazkova M, Holubova B, Kuchar M, Miksatkova P, Lapcik O, Fukal L (2018) Lateral flow immunoassay and enzyme linked immunosorbent assay as effective immunomethods for the detection of synthetic cannabinoid JWH-200 based on the newly synthesized hapten. Toxicol Rep 5:65–75. https://doi.org/10.1016/j.toxrep.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Plouffe BD, Murthy SK (2017) Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use. Electrophoresis 38(3–4):501–506. https://doi.org/10.1002/elps.201600075

    Article  CAS  PubMed  Google Scholar 

  4. Verstraete AG (2005) Oral fluid testing for driving under the influence of drugs: history, recent progress and remaining challenges. Forensic Sci Int 150(2–3):143–150. https://doi.org/10.1016/j.forsciint.2004.11.023

    Article  CAS  PubMed  Google Scholar 

  5. Pashchenko O, Shelby T, Banerjee T, Santra S (2018) A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infect Dis 4(8):1162–1178. https://doi.org/10.1021/acsinfecdis.8b00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maddali H, Miles CE, Kohn J, O'Carroll DM (2020) Optical biosensors for virus detection: prospects for SARS-CoV-2/COVID-19. Chembiochem n/a (n/a). https://doi.org/10.1002/cbic.202000744

  7. Saylan Y, Erdem O, Unal S, Denizli A (2019) An alternative medical diagnosis method: biosensors for virus detection. Biosensors (Basel) 9 (2). https://doi.org/10.3390/bios9020065

  8. Aydindogan E, Balaban S, Evran S, Coskunol H, Timur S (2019) A bottom-up approach for developing aptasensors for abused drugs: biosensors in forensics. Biosensors (Basel) 9 (4). https://doi.org/10.3390/bios9040118

  9. Spychalska K, Zajac D, Baluta S, Halicka K, Cabaj J (2020) Functional polymers structures for (bio)sensing application-a review. Polymers (Basel) 12(5):1154. https://doi.org/10.3390/polym12051154

    Article  CAS  Google Scholar 

  10. Ghorbanizamani F, Moulahoum H, Zihnioglu F, Timur S (2020) Nanohybrid carriers: the yin-yang equilibrium between natural and synthetic in biomedicine. Biomater Sci 8(12):3237–3247. https://doi.org/10.1039/d0bm00401d

    Article  CAS  PubMed  Google Scholar 

  11. Kim MS, Seo KS, Khang G, Cho SH, Lee HB (2004) Preparation of poly(ethylene glycol)-block-poly(caprolactone) copolymers and their applications as thermo-sensitive materials. J Biomed Mater Res A 70(1):154–158. https://doi.org/10.1002/jbm.a.30049

    Article  CAS  PubMed  Google Scholar 

  12. Noguchi A, Takahashi T, Yamaguchi T, Kitamura K, Takakura Y, Hashida M, Sezaki H (1992) Preparation and properties of the immunoconjugate composed of anti-human colon cancer monoclonal antibody and mitomycin C-dextran conjugate. Bioconjug Chem 3(2):132–137. https://doi.org/10.1021/bc00014a007

    Article  CAS  PubMed  Google Scholar 

  13. Scarpa E, Bailey JL, Janeczek AA, Stumpf PS, Johnston AH, Oreffo RO, Woo YL, Cheong YC, Evans ND, Newman TA (2016) Quantification of intracellular payload release from polymersome nanoparticles. Sci Rep 6(1):29460. https://doi.org/10.1038/srep29460

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shukla S, Leem H, Kim M (2011) Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Anal Bioanal Chem 401(8):2581–2590. https://doi.org/10.1007/s00216-011-5327-2

    Article  CAS  PubMed  Google Scholar 

  15. Moulahoum H, Ghorbanizamani F, Zihnioglu F, Timur S (2021) Surface Biomodification of Liposomes and Polymersomes for Efficient Targeted Drug Delivery. Bioconjug Chem 32(8):1491–1502. https://doi.org/10.1021/acs.bioconjchem.1c00285

    Article  CAS  PubMed  Google Scholar 

  16. Ghorbanizamani F, Tok K, Moulahoum H, Harmanci D, Hanoglu SB, Durmus C, Zihnioglu F, Evran S, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Timur S (2021) Dye-loaded polymersome-based lateral flow assay: rational design of a COVID-19 testing platform by repurposing SARS-CoV-2 antibody cocktail and antigens obtained from positive human samples. ACS Sens. https://doi.org/10.1021/acssensors.1c00854

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghorbanizamani F, Moulahoum H, Zihnioglu F, Evran S, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Timur S (2021) Quantitative paper-based dot blot assay for spike protein detection using fuchsine dye-loaded polymersomes. Biosens Bioelectron 192:113484. https://doi.org/10.1016/j.bios.2021.113484

    Article  CAS  PubMed  Google Scholar 

  18. Leong J, Teo JY, Aakalu VK, Yang YY, Kong H (2018) Engineering Polymersomes for diagnostics and therapy. Adv Healthc Mater 7(8):e1701276. https://doi.org/10.1002/adhm.201701276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Men YJ, Peng F, Tu YF, van Hest JCM, Wilson DA (2016) Methods for production of uniform small-sized polymersome with rigid membrane. Polym Chem 7(24):3977–3982. https://doi.org/10.1039/c6py00668j

    Article  CAS  Google Scholar 

  20. Li B, Qi Y, He S, Wang Y, Xie Z, Jing X, Huang Y (2014) Asymmetric copolymer vesicles to serve as a hemoglobin vector for ischemia therapy. Biomater Sci 2(9):1254–1261. https://doi.org/10.1039/c4bm00123k

    Article  CAS  PubMed  Google Scholar 

  21. Simón-Gracia L, Scodeller P, Salazar Fuentes S, Gómez Vallejo V, Ríos X, San Sebastián E, Sidorenko V, Di Silvio D, Suck M, De Lorenzi F, Yokota Rizzo L, von Stillfried S, Kilk K, Lammers T, Moya SE, Teesalu T (2018) Application of polymersomes engineered to target p32 protein for detection of small breast tumors in mice. Oncotarget 9 27

  22. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10 (2). https://doi.org/10.3390/pharmaceutics10020057

  23. Azhar Shekoufeh Bahari L, Hamishehkar H (2016) The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull 6(2):143–151. https://doi.org/10.15171/apb.2016.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arruebo M, Valladares M, Gonzalez-Fernandez A (2009) Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009:439389. https://doi.org/10.1155/2009/439389

    Article  CAS  Google Scholar 

  25. Oliveira JP, Prado AR, Keijok WJ, Antunes PWP, Yapuchura ER, Guimaraes MCC (2019) Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17beta-estradiol. Sci Rep 9(1):13859. https://doi.org/10.1038/s41598-019-50424-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen VT, Song S, Park S, Joo C (2020) Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron 152:112015. https://doi.org/10.1016/j.bios.2020.112015

    Article  CAS  PubMed  Google Scholar 

  27. Soh JH, Chan HM, Ying JY (2020) Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 30:100831. https://doi.org/10.1016/j.nantod.2019.100831

    Article  CAS  Google Scholar 

  28. Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC (2021) Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15(3):3593–3611. https://doi.org/10.1021/acsnano.0c10035

    Article  CAS  PubMed  Google Scholar 

  29. Guteneva NV, Znoyko SL, Orlov AV, Nikitin MP, Nikitin PI (2019) Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse. Mikrochim Acta 186(9):621. https://doi.org/10.1007/s00604-019-3726-9

    Article  CAS  PubMed  Google Scholar 

  30. Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55(11):1910–1931. https://doi.org/10.1373/clinchem.2008.108670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ilea A, Andrei V, Feurdean CN, Babtan AM, Petrescu NB, Campian RS, Bosca AB, Ciui B, Tertis M, Sandulescu R, Cristea C (2019) Saliva, a magic biofluid available for multilevel assessment and a mirror of general health-a systematic review. Biosensors (Basel) 9 (1). https://doi.org/10.3390/bios9010027

  32. Malon RS, Sadir S, Balakrishnan M, Corcoles EP (2014) Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed Res Int 2014:962903. https://doi.org/10.1155/2014/962903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho DG, Yoo H, Lee H, Choi YK, Lee M, Ahn DJ, Hong S (2018) High-Speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity. Sensors (Basel) 18 (5). https://doi.org/10.3390/s18051507

  34. Karnes HT, Shiu G, Shah VP (1991) Validation of bioanalytical methods. Pharm Res 8(4):421–426. https://doi.org/10.1023/a:1015882607690

    Article  CAS  PubMed  Google Scholar 

  35. Chen LC, Wang E, Tai CS, Chiu YC, Li CW, Lin YR, Lee TH, Huang CW, Chen JC, Chen WL (2020) Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens Bioelectron 155:112111. https://doi.org/10.1016/j.bios.2020.112111

    Article  CAS  PubMed  Google Scholar 

  36. Qriouet Z, Cherrah Y, Sefrioui H, Qmichou Z (2021) Monoclonal Antibodies Application in Lateral Flow Immunochromatographic Assays for Drugs of Abuse Detection. Molecules 26 (4). https://doi.org/10.3390/molecules26041058

  37. Teerinen T, Lappalainen T, Erho T (2014) A paper-based lateral flow assay for morphine. Anal Bioanal Chem 406(24):5955–5965. https://doi.org/10.1007/s00216-014-8001-7

    Article  CAS  PubMed  Google Scholar 

  38. Saylan Y, Özgür E, Denizli A (2020) Recent advances of medical biosensors for clinical applications. Medical Devices & Sensors 4(1):e10129. https://doi.org/10.1002/mds3.10129

    Article  Google Scholar 

  39. Ruppert C, Phogat N, Laufer S, Kohl M, Deigner HP (2019) A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Mikrochim Acta 186(2):119. https://doi.org/10.1007/s00604-018-3195-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sengel TY, Celik EG, Aydogan C, Gumus ZP, Ilktac R, Aydindogan E, Ciftci M, Aldemir E, Coskunol H, Timur S, Yagci Y (2018) A functional platform for the detection of jWH-073 as a model for synthetic cannabinoids. ChemElectroChem 5(9):1253–1258. https://doi.org/10.1002/celc.201800015

    Article  CAS  Google Scholar 

  41. Akgönüllü S, Battal D, Yalcin MS, Yavuz H, Denizli A (2020) Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly imprinted polymer-coated QCM nanosensor in artificial saliva. Microchem J 153:104454. https://doi.org/10.1016/j.microc.2019.104454

    Article  CAS  Google Scholar 

  42. Merli D, Profumo A, Tinivella S, Protti S (2019) From smart drugs to smartphone: A colorimetric spot test for the analysis of the synthetic cannabinoid AB-001. Forensic Chemistry 14:100167. https://doi.org/10.1016/j.forc.2019.100167

    Article  CAS  Google Scholar 

  43. Balaban S, Man E, Durmus C, Bor G, Ceylan AE, Pinar Gumus Z, Evran S, Coskunol H, Timur S (2020) Sensor Platform with a Custom-tailored Aptamer for Diagnosis of Synthetic Cannabinoids. Electroanalysis 32(3):656–665. https://doi.org/10.1002/elan.201900670

    Article  CAS  Google Scholar 

  44. Deriu C, Conticello I, Mebel AM, McCord B (2019) Micro Solid Phase Extraction Surface-Enhanced Raman Spectroscopy (mu-SPE/SERS) Screening test for the detection of the synthetic cannabinoid JWH-018 in Oral Fluid. Anal Chem 91(7):4780–4789. https://doi.org/10.1021/acs.analchem.9b00335

    Article  CAS  PubMed  Google Scholar 

  45. Sanli S, Ghorbani-Zamani F, Moulahoum H, Gumus ZP, Coskunol H, Odaci Demirkol D, Timur S (2020) Application of biofunctionalized magnetic nanoparticles based-sensing in abused drugs diagnostics. Anal Chem 92(1):1033–1040. https://doi.org/10.1021/acs.analchem.9b04025

    Article  CAS  PubMed  Google Scholar 

  46. Brunauer A, Ates HC, Dincer C, Früh SM (2020) Integrated paper-based sensing devices for diagnostic applications. In: Merkoçi A (ed) Paper Based Sensors, vol 89. Comprehensive Analytical Chemistry. Elsevier, pp 397–450. https://doi.org/10.1016/bs.coac.2020.03.003

  47. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT (2015) Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol 33(11):692–705. https://doi.org/10.1016/j.tibtech.2015.09.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Republic of Turkey, Ministry of Development, provided the support for the infrastructure of EGE MATAL (Ege University/Izmir) via 2016K121190 grant.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Hichem Moulahoum, Faezeh Ghorbanizamani or Suna Timur.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors approved the final version of the manuscript.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 517 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulahoum, H., Ghorbanizamani, F. & Timur, S. Paper-based lateral flow assay using rhodamine B–loaded polymersomes for the colorimetric determination of synthetic cannabinoids in saliva. Microchim Acta 188, 402 (2021). https://doi.org/10.1007/s00604-021-05062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05062-y

Keywords

Navigation