Skip to main content
Log in

An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A label-free electrochemical aptasensor is reported for sensitive detection of the 6-kDa early secreted antigenic target (ESAT-6). For the first time, the bimetallic organic framework (b-MOF) of Zr-MOF-on-Ce-MOF was decorated with nitrogen-doped graphene (NG) and applied as the matrix for electroactive toluidine blue (Tb) to form the NG@Zr-MOF-on-Ce-MOF@Tb nanohybrid. The prepared nanohybrid with excellent hydrophilicity, dispersibility, and large specific surface exhibited significant electrochemical response. This nanohybrid could be directly used for anchoring ESAT-6 binding aptamers (EBA) through the interaction between the 5′-phosphate group (PO43−) of EBA and Zr4+ of Zr-MOF. The signal response before and after incubating the ESAT-6 antigen has been evaluated by cyclic voltammetry at a scan rate of 100 mV s−1 from − 0.7 to 0.3 V (vs. SCE). Under optimal conditions, the proposed aptasensor displayed a wide linear range from 100 fg mL−1 to 10 ng mL−1 with a limit of detection (LOD) of 12 fg mL−1. The developed method showed good reproducibility with a relative standard deviation (RSD) of 2.27%. The aptasensor showed favorable results in the analysis of the real samples. With these merits, the aptasensor has exceptional potential as a diagnostic tool for tuberculosis in clinical practice.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furin J, Cox H, Pai M (2019) Tuberculosis. Lancet 393:1642–1656. https://doi.org/10.1016/S0140-6736(19)30308-3

    Article  PubMed  Google Scholar 

  2. Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N, Sapkota B (2020) Advances in diagnosis of tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep 47(5):4065–4075. https://doi.org/10.1007/s11033-020-05413-7

    Article  CAS  PubMed  Google Scholar 

  3. Opota O, Senn L, Prod’hom G, Stalder JM, Tissot F, Greub G, Jaton K (2016) Added value of molecular assay Xpert MTB/RIF compared to sputum smear microscopy to assess the risk of tuberculosis transmission in a low-prevalence country. Clin Microbiol Infect 22(7):613–619. https://doi.org/10.1016/j.cmi.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12(11):500–508. https://doi.org/10.1016/j.tim.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  5. Poulakis N, Gritzapis AD, Ploussi M, Leventopoulos M, Papageorgiou CV, Anastasopoulos A, Constantoulakis P, Karabela S, Vogiatzakis E, Tsilivakos V (2016) Intracellular ESAT-6: a new biomarker for Mycobacterium tuberculosis infection. Cytometry B Clin Cytom 90(3):312–314. https://doi.org/10.1002/cyto.b.21220

    Article  CAS  PubMed  Google Scholar 

  6. Li LL, Yuan YH, Chen YJ, Zhang P, Bai Y, Bai LJ (2018) Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Microchim Acta 185(8):1–9. https://doi.org/10.1007/s00604-018-2884-5

    Article  CAS  Google Scholar 

  7. Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M (2017) Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater Sci Eng C 74:465–470. https://doi.org/10.1016/j.msec.2016.12.051

    Article  CAS  Google Scholar 

  8. Gupta S, Kakkar V (2019) DARPin based GMR biosensor for the detection of ESAT-6 tuberculosis protein. Tuberculosis 118:101852. https://doi.org/10.1016/j.tube.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  9. Singh N, Sreenivas V, Sheoran A, Sharma S, Gupta KB, Khuller GK, Mehta PK (2016) Serodiagnostic potential of immuno-PCR using a cocktail of mycobacterial antigen 85B, ESAT-6 and cord factor in tuberculosis patients. J Microbiol Methods 120:56–64. https://doi.org/10.1016/j.mimet.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  10. Toh SY, Citartan M, Gopinath SC, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. https://doi.org/10.1016/j.bios.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  11. Golichenari B, Nosrati R, Fard FA, Maleki MF, Hayat SMG, Ghazvini K, Vaziri F, Behravan J (2019) Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 39(8):1056–1077. https://doi.org/10.1080/07388551.2019.1668348

    Article  CAS  PubMed  Google Scholar 

  12. Chen YH, Liu XZ, Guo SL, Cao J, Zhou J, Zuo JL, Bai LJ (2019) A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials 216:119253. https://doi.org/10.1016/j.biomaterials.2019.119253

    Article  CAS  PubMed  Google Scholar 

  13. Bai LJ, Chen YH, Bai Y, Chen YJ, Zhou J, Huang AL (2017) Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19. https://doi.org/10.1016/j.biomaterials.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Chen YH, Guo SL, Zhao M, Zhang P, Xin ZL, Tao J, Bai LJ (2018) Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens Bioelectron 119:215–220. https://doi.org/10.1016/j.bios.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  15. Jinendra U, Bilehal D, Nagabhushana BM, Reddy KR, Reddy CV, Raghu AV (2019) Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: comparative adsorption studies, isotherms and kinetic studies. Mater Sci Energy Technol 2(3):657–666. https://doi.org/10.1016/j.mset.2019.08.005

    Article  Google Scholar 

  16. Kannan K, Radhika D, Nesaraj AS, Sadasivuni KK, Reddy KR, Kasai D, Raghu AV (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater Sci Energy Technol 3:853–861. https://doi.org/10.1016/j.mset.2020.10.008

    Article  CAS  Google Scholar 

  17. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci 281:102178. https://doi.org/10.1016/j.cis.2020.102178

    Article  CAS  PubMed  Google Scholar 

  18. Rangayasami A, Kannan K, Murugesan S, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2021) Influence of nanotechnology to combat against COVID-19 for global health emergency: a review. Sensors Int 100079. https://doi.org/10.1016/j.sintl.2020.100079

  19. Mathew T, Sree RA, Aishwarya S, Kounaina K, Patil AG, Satapathy P, Hudeda SP, More SS, Muthucheliyan K, Kumar TN, Raghu AV, Reddy KR, Zameer F (2020) Graphene-based functional nanomaterials for biomedical and bioanalysis applications. Flat Chem 100184. https://doi.org/10.1016/j.flatc.2020.100184

  20. Yaghi OM, O’Keeffe M, Ockwig NM, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HT, Zhang JW, Huang G, Du ZY, Jiang HL (2014) An amine-functionalized metal–organic framework as a sensing platform for DNA detection. Chem Commun 50(81):12069–12072. https://doi.org/10.1039/C4CC05571C

    Article  CAS  Google Scholar 

  22. Wu YF, Han JY, Xue P, Xu R, Kang YJ (2015) Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7(5):1753–1759. https://doi.org/10.1039/C4NR05447D

    Article  CAS  PubMed  Google Scholar 

  23. Qiu QM, Chen HY, Wang YX, Ying YB (2019) Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord Chem Rev 387:60–78. https://doi.org/10.1016/j.ccr.2019.02.009

    Article  CAS  Google Scholar 

  24. Qiu WW, Gao F, Yano N, Kataoka Y, Handa M, Yang WQ, Tanaka H, Wang QX (2020) Specific coordination between Zr-MOF and phosphate-terminated DNA coupled with strand displacement for the construction of reusable and ultrasensitive aptasensor. Anal Chem 92(16):11332–11340. https://doi.org/10.1021/acs.analchem.0c02018

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Hu MY, Huang XY, Wang MH, He LH, Song YP, Jia Q, Zhou N, Zhang Z, Du M (2020) Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sensors Actuators B Chem 306:127608. https://doi.org/10.1016/j.snb.2019.127608

    Article  CAS  Google Scholar 

  26. Zhou N, Su FF, Guo CP, He LH, Jia ZK, Wang MH, Jia QJ, Zhang ZH, Lu SY (2019) Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: a highly sensitive and selective platform for detecting cancer markers. Biosens Bioelectron 123:51–58. https://doi.org/10.1016/j.bios.2018.09.079

    Article  CAS  PubMed  Google Scholar 

  27. Wang MH, Hu MY, Li ZZ, He LH, Song YP, Jia QJ, Zhang ZH, Du M (2019) Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosensors Bioelectronics 142:111536. https://doi.org/10.1016/j.bios.2019.111536

    Article  CAS  PubMed  Google Scholar 

  28. He BS, Dong XZ (2019) Hierarchically porous Zr-MOFs labelled methylene blue as signal tags for electrochemical patulin aptasensor based on ZnO nano flower. Sensors Actuators B Chem 294:192–198. https://doi.org/10.1016/j.snb.2019.05.045

    Article  CAS  Google Scholar 

  29. Gu YF, Wu YN, Li LC, Chen W, Li FT, Kitagawa S (2017) Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew Chem Int Ed 129(49):15864–15868. https://doi.org/10.1002/ange.201709738

    Article  Google Scholar 

  30. Zhang JJ, Chen SH, Ruo Y, Zhong X, Wu XP (2015) An ultrasensitive electrochemiluminescent biosensor for the detection of concanavalin A based on poly (ethylenimine) reduced graphene oxide and hollow gold nanoparticles. Anal Bioanal Chem 407(2):447–453. https://doi.org/10.1007/s00216-014-8290-x

    Article  CAS  PubMed  Google Scholar 

  31. Tang XL, Zhou YX, Wu SM, Pan Q, Xia B, Zhang XL (2014) CFP10 and ESAT6 aptamers as effective Mycobacterial antigen diagnostic reagents. J Infect 69(9):569–580. https://doi.org/10.1016/j.jinf.2014.05.015

    Article  PubMed  Google Scholar 

  32. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22(24):6632–6640. https://doi.org/10.1021/cm102601v

    Article  CAS  Google Scholar 

  33. Xiong YH, Chen SH, Ye FG, Su LJ, Zhang C, Shen SF, Zhao SL (2015) Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun 51(22):4635–4638. https://doi.org/10.1039/C4CC10346G

    Article  CAS  Google Scholar 

  34. Omar RA, Verma N, Arora PK (2021) Development of ESAT-6 based immunosensor for the detection of Mycobacterium tuberculosis. Front Immunol 12:653853. https://doi.org/10.3389/fimmu.2021.653853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mgwili PY (2017) Graphenated organic nanoparticles immunosensors for the detection of TB biomarkers. http://hdl.handle.net/11394/6355

  36. Bakhori NM, Yusof NA, Abdullah J, Wasoh H, Rahman SKA, Rahman SFA (2020) Surface enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium Tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials 13(1):149. https://doi.org/10.3390/ma13010149

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (82072378, 81601856), Chongqing Talent Program, China (CQYC202005015), Ba Yu Scholar Program, China (YS2019020), Funds for High Level Young Science and Technology Talent Cultivation Plan in Chongqing Medical University, China (2019), Discipline Talent Training Program of College of Pharmacy in Chongqing Medical University, China (YXY2019XSGG4), and Funds for Young Science and Technology Talent Cultivation Plan of Chongqing City (cstc2014kjrc-qnrc00004).

Author information

Authors and Affiliations

Authors

Contributions

Jiaojiao Xie: conceptualization, methodology, formal analysis, writing—original draft, visualization. Zhaode Mu: conceptualization, investigation, resources. Bin Yan: software, supervision, visualization. Jie Wang: software. Jing Zhou: investigation, software. Lijuan Bai: methodology, resources, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Lijuan Bai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 319 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Mu, Z., Yan, B. et al. An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework. Microchim Acta 188, 404 (2021). https://doi.org/10.1007/s00604-021-05058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05058-8

Keywords

Navigation