Skip to main content
Log in

Copper nanocluster composites for analytical (bio)-sensing and imaging: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

As an ideal substitute for traditional organic fluorescent dyes or up-conversion nanomaterials, copper nanoclusters (CuNCs) have developed rapidly and have been involved in exciting achievements in versatile applications. The emergence of novel CuNCs composites improves the poor stability and fluorescence intensity of CuNCs. With this in mind, great efforts have been made to develop a wide variety of CuNCs composites, and impressive progress has been made in the past few years. In this review, we systematically summarize absorption, fluorescence, electrochemiluminescence, and catalytic properties and focus on the multiple factors that affect the fluorescence properties of CuNCs. The fluorescence properties of CuNCs are discussed from the point of view of core size, surface ligands, self-assembly, metal defects, pH, solvent, ions, metal doping, and confinement effect. Especially, we illustrate the research progress and representative applications of CuNCs composites in bio-related fields, which have received considerable interests in the past years. Additionally, the sensing mechanism of CuNCs composites is highlighted. Finally, we summarize current challenges and look forward to the future development of CuNCs composites.

Graphical abstract

Schematic diagram of the categories, possible sensing mechanisms, and bio-related applications of copper nanoclusters composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu X, Liu T, Zhuang YX, Wang W, Li YY, Fan WH, Huang YM (2016) Recent advances in the analytical applications of copper nanoclusters. TrAC Trends Anal Chem 77:66–75. https://doi.org/10.1016/j.trac.2015.12.013

    Article  CAS  Google Scholar 

  2. Wang ZG, Chen BK, Rogach AL (2017) Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz 2(3):135–146. https://doi.org/10.1039/c7nh00013h

    Article  CAS  PubMed  Google Scholar 

  3. Li D, Chen H, Gao XH, Mei XF, Yang LQ (2021) Development of general methods for detection of virus by engineering fluorescent silver nanoclusters. ACS Sens 6(3):613–627. https://doi.org/10.1021/acssensors.0c02322

    Article  CAS  PubMed  Google Scholar 

  4. Tsai TT, Chen CA, Yi-Ju Ho N, Yang S, Chen CF (2019) Fluorescent double-stranded DNA-templated copper nanoprobes for rapid diagnosis of tuberculosis. ACS Sens 4(11):2885–2892. https://doi.org/10.1021/acssensors.9b01163

    Article  CAS  PubMed  Google Scholar 

  5. Fu JT, Zhang ZM, Li GK (2019) Progress on the development of DNA-mediated metal nanomaterials for environmental and biological analysis. Chin Chem Lett 30(2):285–291. https://doi.org/10.1016/j.cclet.2018.10.031

    Article  CAS  Google Scholar 

  6. Zheng YK, Wu JB, Jiang H, Wang XM (2021) Gold nanoclusters for theranostic applications. Coord Chem Rev 431:213689. https://doi.org/10.1016/j.ccr.2020.213689

    Article  CAS  Google Scholar 

  7. Lu HZ, Xu SF (2017) Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles. Biosens Bioelectron 92:147–153. https://doi.org/10.1016/j.bios.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  8. Jia Y, Yang L, Xue JW, Zhang N, Fan DW, Ma HM, Ren X, Hu LH, Wei Q (2019) Bioactivity-protected electrochemiluminescence biosensor using gold nanoclusters as the low-potential luminophor and Cu2S snowflake as co-reaction accelerator for procalcitonin analysis. ACS Sens 4(7):1909–1916. https://doi.org/10.1021/acssensors.9b00870

    Article  CAS  PubMed  Google Scholar 

  9. Wang MK, Chen JY, Jiang S, Nie YX, Su XG (2021) Rapid synthesis of dual proteins co-functionalized gold nanoclusters for ratiometric fluorescence sensing of polynucleotide kinase activity. Sens Actuators B 329:129200. https://doi.org/10.1016/j.snb.2020.129200

    Article  CAS  Google Scholar 

  10. Fu B, Zheng X, Li H, Ding L, Wang F, Guo DY, Yang W, Pan Q (2021) A highly stable, rapid and sensitive fluorescent probe for ciprofloxacin based on Al3+-enhanced fluorescence of gold nanoclusters. Sens Actuators B 346:130502. https://doi.org/10.1016/j.snb.2021.130502

    Article  CAS  Google Scholar 

  11. Chen YF, Qiao J, Liu QR, Qi L (2018) Ovalbumin-stabilized gold nanoclusters with ascorbic acid as reducing agent for detection of serum copper. Chin Chem Lett 29(3):366–370. https://doi.org/10.1016/j.cclet.2017.10.014

    Article  CAS  Google Scholar 

  12. Jiang YL, Yu Y, Zhang X, Weinert M, Song XL, Ai J, Han L, Fei HH (2021) N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew Chem Int Ed 60(32):17388–17393. https://doi.org/10.1002/anie.202105420

    Article  CAS  Google Scholar 

  13. Lan WF, Tan QQ, Qiao J, Shen GY, Qi L (2019) D-Proline capped gold nanoclusters for turn-on detection of serum raltitrexed. Chin Chem Lett 30(9):1627–1630. https://doi.org/10.1016/j.cclet.2019.05.019

    Article  CAS  Google Scholar 

  14. Fan C, Lv XX, Liu FJ, Feng LP, Liu M, Cai YY, Liu H, Wang JY, Yang YL, Wang H (2018) Silver nanoclusters encapsulated into metal–organic frameworks with enhanced fluorescence and specific ion accumulation toward the microdot array-based fluorimetric analysis of copper in blood. ACS Sens 3(2):441–450. https://doi.org/10.1021/acssensors.7b00874

    Article  CAS  PubMed  Google Scholar 

  15. Liu MJ, Ren XL, Liu X, Tan LF, Li H, Wei J, Fu CH, Wu Q, Ren J, Li HB, Meng XW (2020) Luminescent silver nanoclusters for efficient detection of adenosine triphosphate in a wide range of pH values. Chin Chem Lett 31(12):3117–3120. https://doi.org/10.1016/j.cclet.2020.06.024

    Article  CAS  Google Scholar 

  16. Liu LY, Zhu SY, Sun J, Xia M, Zhao XE, Xu GB (2021) Ratiometric fluorescence detection of bleomycin based on proximity-dependent fluorescence conversion of DNA-templated silver nanoclusters. Chin Chem Lett 32(2):906–909. https://doi.org/10.1016/j.cclet.2020.07.015

    Article  CAS  Google Scholar 

  17. An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B (2020) Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 154:112078. https://doi.org/10.1016/j.bios.2020.112078

    Article  CAS  PubMed  Google Scholar 

  18. Qing ZH, Bai AL, Xing SH, Zou Z, He XX, Wang KM, Yang RH (2019) Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 137:96–109. https://doi.org/10.1016/j.bios.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  19. Fang XM, Huang YH, Yu D, Shi CW, Liu M (2020) Highly stable folic acid functionalized copper-nanocluster/silica nanoparticles for selective targeting of cancer cells. RSC Adv 10(52):31463–31469. https://doi.org/10.1039/d0ra06523d

    Article  CAS  Google Scholar 

  20. Yin B, Liu RR, Zhai HL, Lu SH, Mi JY (2020) One-pot facile synthesis of CuNCs/RGO nanocomposite for the sensitive detection of heparin in human serum samples. Talanta 213:120838. https://doi.org/10.1016/j.talanta.2020.120838

    Article  CAS  PubMed  Google Scholar 

  21. Han BY, Hu XX, Yu MB, Peng TT, Li Y, He GH (2018) One-pot synthesis of enhanced fluorescent copper nanoclusters encapsulated in metal–organic frameworks. RSC Adv 8(40):22748–22754. https://doi.org/10.1039/c8ra03632b

    Article  CAS  Google Scholar 

  22. Gao XQ, Zhuang XM, Tian CY, Liu HT, Lai WF, Wang ZG, Yang XM, Chen LX, Rogach AL (2020) A copper nanocluster incorporated nanogel: confinement-assisted emission enhancement for zinc ion detection in living cells. Sens Actuators B 307:127626. https://doi.org/10.1016/j.snb.2019.127626

    Article  CAS  Google Scholar 

  23. Liu MY, Kuang KX, Li GH, Yang SQ, Yuan ZW (2021) Photoluminescence-enhanced cholesteric films: coassembling copper nanoclusters with cellulose nanocrystals. Carbohydr Polym 257:117641. https://doi.org/10.1016/j.carbpol.2021.117641

    Article  CAS  PubMed  Google Scholar 

  24. Huang XM, Lan MJ, Wang J, Guo LH, Lin ZY, Sun N, Wu CM, Qiu B (2020) A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of beta-galactosidase based on the effects of AIE and host-guest recognition. Biosens Bioelectron 169:112655. https://doi.org/10.1016/j.bios.2020.112655

    Article  CAS  PubMed  Google Scholar 

  25. Wang MK, Wang S, Su DD, Su XG (2018) Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination. Anal Chim Acta 1035:184–191. https://doi.org/10.1016/j.aca.2018.06.043

    Article  CAS  PubMed  Google Scholar 

  26. Chen SH, Huang ZZ, Jia Q (2020) Electrostatically confined in-situ preparation of stable glutathione-capped copper nanoclusters for fluorescence detection of lysozyme. Sens Actuators B 319:128305. https://doi.org/10.1016/j.snb.2020.128305

    Article  CAS  Google Scholar 

  27. Di GL, Zhu ZL, Dai Q, Zhang H, Shen XL, Qiu YL, Huang YY, Yu JN, Yin DQ, Küppers S (2020) Wavelength-dependent effects of carbon quantum dots on the photocatalytic activity of g-C3N4 enabled by LEDs. Chem Eng J 379:122296. https://doi.org/10.1016/j.cej.2019.122296

    Article  CAS  Google Scholar 

  28. Elmacı G, Ertürk AS, Sevim M, Metin Ö (2019) MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction. Int J Hydrogen Energy 44(33):17995–18006. https://doi.org/10.1016/j.ijhydene.2019.05.089

    Article  CAS  Google Scholar 

  29. Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA (2020) Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int J Biol Macromol 156:704–716. https://doi.org/10.1016/j.ijbiomac.2020.04.019

    Article  CAS  PubMed  Google Scholar 

  30. Chen SH, Li Z, Li WJ, Huang ZZ, Jia Q (2021) Confining copper nanoclusters on exfoliation-free 2D boehmite nanosheets: fabrication of ultra-sensitive sensing platform for alpha-glucosidase activity monitoring and natural anti-diabetes drug screening. Biosens Bioelectron 182:113198. https://doi.org/10.1016/j.bios.2021.113198

    Article  CAS  PubMed  Google Scholar 

  31. Mott D, Galkowski J, Wang LY, Luo J, Zhong CJ (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23(10):5740–5745. https://doi.org/10.1021/la0635092

    Article  CAS  PubMed  Google Scholar 

  32. Díez I, Ras RHA (2011) Fluorescent silver nanoclusters Nanoscale 3(5):1963–1970. https://doi.org/10.1039/c1nr00006c

    Article  PubMed  Google Scholar 

  33. Zhou TY, Yao QH, Zhao TT, Chen X (2015) One-pot synthesis of fluorescent DHLA-stabilized Cu nanoclusters for the determination of H2O2. Talanta 141:80–85. https://doi.org/10.1016/j.talanta.2015.03.056

    Article  CAS  PubMed  Google Scholar 

  34. Zhang LB, Wang EK (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1):132–157. https://doi.org/10.1016/j.nantod.2014.02.010

    Article  CAS  Google Scholar 

  35. Qing TP, Zhang KW, Qing ZH, Wang X, Long CC, Zhang P, Hu HZ, Feng B (2019) Recent progress in copper nanocluster-based fluorescent probing: a review. Microchim Acta 186(10):670. https://doi.org/10.1007/s00604-019-3747-4

    Article  CAS  Google Scholar 

  36. Zhao ZY, Li YT (2020) Developing fluorescent copper nanoclusters: synthesis, properties, and applications. Colloids Surf B 195:111244. https://doi.org/10.1016/j.colsurfb.2020.111244

    Article  CAS  Google Scholar 

  37. Jia XF, Li J, Wang EK (2013) Cu nanoclusters with aggregation induced emission enhancement. Small 9(22):3873–3879. https://doi.org/10.1002/smll.201300896

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A (2015) Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl Mater Interfaces 7(1):209–222. https://doi.org/10.1021/am505799q

    Article  CAS  PubMed  Google Scholar 

  39. Jia XF, Yang X, Li J, Li DY, Wang EK (2014) Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun 50(2):237–239. https://doi.org/10.1039/c3cc47771a

    Article  CAS  Google Scholar 

  40. Huseyinova S, Blanco J, Requejo FG, Ramallo-López JM, Blanco MC, Buceta D, López-Quintela MA (2016) Synthesis of highly stable surfactant-free Cu5 clusters in water. J Phys Chem C 120(29):15902–15908. https://doi.org/10.1021/acs.jpcc.5b12227

    Article  CAS  Google Scholar 

  41. Wang C, Yao YG, Song QJ (2016) Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: size-dependent tunable photoluminescence, pH sensor and bioimaging. Colloids Surf B 140:373–381. https://doi.org/10.1016/j.colsurfb.2016.01.001

    Article  CAS  Google Scholar 

  42. Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, Xie JP (2012) From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J Am Chem Soc 134(40):16662–16670. https://doi.org/10.1021/ja306199p

    Article  CAS  PubMed  Google Scholar 

  43. Wu ZK, Jin RC (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10(7):2568–2573. https://doi.org/10.1021/nl101225f

    Article  CAS  PubMed  Google Scholar 

  44. Jiao MX, Li Y, Jia YX, Xu L, Xu GY, Guo YS, Luo XL (2020) Ligand-modulated aqueous synthesis of color-tunable copper nanoclusters for the photoluminescent assay of Hg(II). Microchim Acta 187(10):545. https://doi.org/10.1007/s00604-020-04539-6

    Article  CAS  Google Scholar 

  45. Lin YS, Chiu TC, Hu CC (2019) Fluorescence-tunable copper nanoclusters and their application in hexavalent chromium sensing. RSC Adv 9(16):9228–9234. https://doi.org/10.1039/c9ra00916g

    Article  CAS  Google Scholar 

  46. Li D, Chen ZH, Mei XF (2017) Fluorescence enhancement for noble metal nanoclusters. Adv Colloid Interface Sci 250:25–39. https://doi.org/10.1016/j.cis.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Yao D, Zhang H (2018) Self-assembly driven aggregation-induced emission of copper nanoclusters: a novel technology for lighting. ACS Appl Mater Interfaces 10(15):12071–12080. https://doi.org/10.1021/acsami.7b13940

    Article  CAS  PubMed  Google Scholar 

  48. Ai L, Jiang WR, Liu ZY, Liu JL, Gao Y, Zou HY, Wu ZN, Wang ZG, Liu Y, Zhang H, Yang B (2017) Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands. Nanoscale 9(34):12618–12627. https://doi.org/10.1039/c7nr03985a

    Article  CAS  PubMed  Google Scholar 

  49. Wu ZN, Liu HW, Li TT, Liu JL, Yin J, Mohammed OF, Bakr OM, Liu Y, Yang B, Zhang H (2017) Contribution of metal defects in the assembly induced emission of Cu nanoclusters. J Am Chem Soc 139(12):4318–4321. https://doi.org/10.1021/jacs.7b00773

    Article  CAS  PubMed  Google Scholar 

  50. Su XX, Liu JB (2017) pH-guided self-assembly of copper nanoclusters with aggregation-induced emission. ACS Appl Mater Interfaces 9(4):3902–3910. https://doi.org/10.1021/acsami.6b13914

    Article  CAS  PubMed  Google Scholar 

  51. Yuan J, Wang L, Wang Y, Hao J (2020) Stimuli-responsive fluorescent nanoswitches: solvent-induced emission enhancement of copper nanoclusters. Chem.-Eur J 26(16):3545–3554. https://doi.org/10.1002/chem.201905094

  52. Cai YY, Wang FX, Hua Y, Liu H, Yin MY, Zhang CX, Zhang Y, Wang H (2020) A fluorimetric testing strip for the visual evaluation of mercury in blood using copper nanoclusters with DMSO-enhanced fluorescence and stability. Nanoscale 12(47):24079–24084. https://doi.org/10.1039/d0nr06896a

    Article  CAS  PubMed  Google Scholar 

  53. Maruthupandi M, Thiruppathi D, Vasimalai N (2020) One minute synthesis of green fluorescent copper nanocluster: the preparation of smartphone aided paper-based kit for on-site monitoring of nanomolar level mercury and sulfide ions in environmental samples. J Hazard Mater 392:122294. https://doi.org/10.1016/j.jhazmat.2020.122294

    Article  CAS  PubMed  Google Scholar 

  54. Li HL, Zhu WL, Wan AJ, Liu LB (2017) The mechanism and application of the protein-stabilized gold nanocluster sensing system. Analyst 142(4):567–581. https://doi.org/10.1039/c6an02112c

    Article  CAS  PubMed  Google Scholar 

  55. Zhang TX, Xu HW, Xu SH, Dong B, Wu ZY, Zhang XR, Zhang LH, Song HW (2016) DNA stabilized Ag–Au alloy nanoclusters and their application as sensing probes for mercury ions. RSC Adv 6(57):51609–51618. https://doi.org/10.1039/c6ra07563k

    Article  CAS  Google Scholar 

  56. Li D, Chen ZH, Wan ZH, Yang TZ, Wang H, Mei XF (2016) One-pot development of water soluble copper nanoclusters with red emission and aggregation induced fluorescence enhancement. RSC Adv 6(41):34090–34095. https://doi.org/10.1039/c6ra01499b

    Article  CAS  Google Scholar 

  57. Hu Y, Yu W, Liao Y, Jiang X, Cheng Z (2021) Alliance between doping Ag and dual ligands-enhanced fluorescent gold nanoclusters for the assays of vitamin B12 and chlortetracycline hydrochloride. Spectrochim Acta Part A 263:120194. https://doi.org/10.1016/j.saa.2021.120194

    Article  CAS  Google Scholar 

  58. Yang JL, Song NZ, Jia Q (2019) Electrostatically controlled fluorometric assay for differently charged biotargets based on the use of silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide. Microchim Acta 186(2):70. https://doi.org/10.1007/s00604-018-3179-6

    Article  CAS  Google Scholar 

  59. Liu JL, Wu ZN, Tian Y, Li YC, Ai L, Li TT, Zou HY, Liu Y, Zhang XD, Zhang H, Yang B (2017) Engineering the self-assembly induced emission of Cu nanoclusters by Au(I) doping. ACS Appl Mater Interfaces 9(29):24899–24907. https://doi.org/10.1021/acsami.7b06371

    Article  CAS  PubMed  Google Scholar 

  60. Kong LC, Chu XF, Wang CX, Zhou H, Wu YK, Liu WW (2018) D-penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange. Nanoscale 10(4):1631–1640. https://doi.org/10.1039/c7nr08434j

    Article  CAS  PubMed  Google Scholar 

  61. Meng J, E S, Wei X, Chen XW, Wang JH, (2019) Confinement of AuAg NCs in a pomegranate-type silica architecture for improved copper ion sensing and imaging. ACS Appl Mater Interfaces 11(23):21150–21158. https://doi.org/10.1021/acsami.9b04047

    Article  CAS  PubMed  Google Scholar 

  62. Tian R, Zhang ST, Li MW, Zhou YQ, Lu B, Yan DP, Wei M, Evans DG, Duan X (2015) Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence. Adv Funct Mater 25(31):5006–5015. https://doi.org/10.1002/adfm.201501433

    Article  CAS  Google Scholar 

  63. Song LQ, Shi JJ, Lu J, Lu C (2015) Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chem Sci 6(8):4846–4850. https://doi.org/10.1039/c5sc01416f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang JL, Song NZ, Jia Q (2019) Investigation of the surface confinement effect of copper nanoclusters: construction of an ultrasensitive fluorescence turn-on bio-enzyme sensing platform. Nanoscale 11(45):21927–21933. https://doi.org/10.1039/c9nr06036g

    Article  CAS  PubMed  Google Scholar 

  65. Yang JL, Li Z, Jia Q (2020) Anchoring copper nanoclusters to Zn-containing hydroxy double salt: construction of 2D surface confinement induced enhanced emission toward bio-enzyme sensing and light-emitting diode fabrication. Chem Commun 56(20):3081–3084. https://doi.org/10.1039/d0cc00389a

    Article  CAS  Google Scholar 

  66. Hu X, Liu XD, Zhang XD, Chai HX, Huang YM (2018) One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens Bioelectron 105:65–70. https://doi.org/10.1016/j.bios.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  67. Diez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Muller AH, Ikkala O, Ras RH (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed Engl 48(12):2122–2125. https://doi.org/10.1002/anie.200806210

    Article  CAS  PubMed  Google Scholar 

  68. Hesari M, Ding ZF (2017) A grand avenue to Au nanocluster electrochemiluminescence. Acc Chem Res 50(2):218–230. https://doi.org/10.1021/acs.accounts.6b00441

    Article  CAS  PubMed  Google Scholar 

  69. Liao HX, Zhou Y, Chai YQ, Yuan R (2018) An ultrasensitive electrochemiluminescence biosensor for detection of microRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO2 as coreaction accelerator. Biosens Bioelectron 114:10–14. https://doi.org/10.1016/j.bios.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  70. Pan MC, Lei YM, Chai YQ, Yuan R, Zhuo Y (2020) In situ controllable generation of copper nanoclusters confined in a poly-l-cysteine porous film with enhanced electrochemiluminescence for alkaline phosphatase detection. Anal Chem 92(19):13581–13587. https://doi.org/10.1021/acs.analchem.0c03312

    Article  CAS  PubMed  Google Scholar 

  71. Chen W, Chen SW (2009) Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem Int Ed Engl 48(24):4386–4389. https://doi.org/10.1002/anie.200901185

    Article  CAS  PubMed  Google Scholar 

  72. Zeng J, Zhang Q, Chen JY, Xia YN (2010) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10(1):30–35. https://doi.org/10.1021/nl903062e

    Article  CAS  PubMed  Google Scholar 

  73. Basu K, Paul S, Jana R, Datta A, Banerjee A (2018) Red-emitting copper nanoclusters: from bulk-scale synthesis to catalytic reduction. ACS Sustainable Chem Eng 7(2):1998–2007. https://doi.org/10.1021/acssuschemeng.8b04301

    Article  CAS  Google Scholar 

  74. Xu SJ, Chen FN, Deng M, Sui YY (2014) Luminol chemiluminescence enhanced by copper nanoclusters and its analytical application. RSC Adv 4(30):15664–15670. https://doi.org/10.1039/c4ra00516c

    Article  CAS  Google Scholar 

  75. Pilar de Lara-Castells M, Hauser AW, Ramallo-López JM, Buceta D, Giovanetti LJ, López-Quintela MA, Requejo FG (2019) Increasing the optical response of TiO2 and extending it into the visible region through surface activation with highly stable Cu5 clusters. J Mater Chem A 7(13):7489–7500. https://doi.org/10.1039/c9ta00994a

    Article  CAS  Google Scholar 

  76. Li ZL, Pang SJ, Wang M, Wu M, Li PJ, Bai JN, Yang XD (2021) Dual-emission carbon dots-copper nanoclusters ratiometric photoluminescent nano-composites for highly sensitive and selective detection of Hg2+. Ceram Int 47(13):18238–18245. https://doi.org/10.1016/j.ceramint.2021.03.143

    Article  CAS  Google Scholar 

  77. He WJ, Gui RJ, Jin H, Wang BQ, Bu XN, Fu YX (2018) Ratiometric fluorescence and visual imaging detection of dopamine based on carbon dots/copper nanoclusters dual-emitting nanohybrids. Talanta 178:109–115. https://doi.org/10.1016/j.talanta.2017.09.019

    Article  CAS  PubMed  Google Scholar 

  78. Hu X, Liu XD, Zhang XD, Cao HY, Huang YM (2019) MnO2 nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione. Sens Actuators B 286:476–482. https://doi.org/10.1016/j.snb.2019.02.010

    Article  CAS  Google Scholar 

  79. Gao XQ, Liu J, Zhuang XM, Tian CY, Luan F, Liu HT, Xiong Y (2020) Incorporating copper nanoclusters into a zeolitic imidazole framework-90 for use as a highly sensitive adenosine triphosphate sensing system to evaluate the freshness of aquatic products. Sens Actuators B 308:127720. https://doi.org/10.1016/j.snb.2020.127720

    Article  CAS  Google Scholar 

  80. Shi YE, Han F, Xie LY, Zhang CC, Li TZ, Wang HG, Lai WF, Luo SJ, Wei W, Wang ZG, Huang Y (2019) A MXene of type Ti3C2Tx functionalized with copper nanoclusters for the fluorometric determination of glutathione. Microchim Acta 187(1):38. https://doi.org/10.1007/s00604-019-4000-x

    Article  CAS  Google Scholar 

  81. Liu JN, Bu WB, Shi JL (2017) Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev 117(9):6160–6224. https://doi.org/10.1021/acs.chemrev.6b00525

    Article  CAS  PubMed  Google Scholar 

  82. Robidillo CJT, Wandelt S, Dalangin R, Zhang L, Yu H, Meldrum A, Campbell RE, Veinot JGC (2019) Ratiometric detection of nerve agents by coupling complementary properties of silicon-based quantum dots and green fluorescent protein. ACS Appl Mater Interfaces 11(36):33478–33488. https://doi.org/10.1021/acsami.9b10996

    Article  CAS  PubMed  Google Scholar 

  83. Bragina VA, Znoyko SL, Orlov AV, Pushkarev AV, Nikitin MP, Nikitin PI (2019) Analytical platform with selectable assay parameters based on three functions of magnetic nanoparticles: demonstration of highly sensitive rapid quantitation of staphylococcal enterotoxin B in food. Anal Chem 91(15):9852–9857. https://doi.org/10.1021/acs.analchem.9b01519

    Article  CAS  PubMed  Google Scholar 

  84. Gu Y, Wang JP, Shi HP, Pan MF, Liu B, Fang GZ, Wang S (2019) Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosens Bioelectron 128:129–136. https://doi.org/10.1016/j.bios.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  85. Zhang H, Dong XZ, Wang JH, Guan RF, Cao DX, Chen QF (2019) Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions. ACS Appl Mater Interfaces 11(35):32489–32499. https://doi.org/10.1021/acsami.9b09545

    Article  CAS  PubMed  Google Scholar 

  86. Wen ZQ, Song SL, Wang CX, Qu FD, Thomas TJ, Hu TT, Wang P, Yang MH (2019) Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sens Actuators B 282:9–15. https://doi.org/10.1016/j.snb.2018.11.041

    Article  CAS  Google Scholar 

  87. Wang MK, Kong DS, Su DD, Liu Y, Su XG (2019) Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot–copper nanocluster nanohybrid. Nanoscale 11(29):13903–13908. https://doi.org/10.1039/c9nr02901j

    Article  CAS  PubMed  Google Scholar 

  88. Liu ZC, Qi JW, Hu C, Zhang L, Song W, Liang RP, Qiu JD (2015) Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal Chim Acta 895:95–103. https://doi.org/10.1016/j.aca.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  89. Liu S, Yin S, Zhang H, Jiao S, Wang Z, Xu Y, Li X, Wang L, Wang H (2021) Trimetallic Au@PdPt porous core-shell structured nanowires for oxygen reduction electrocatalysis. Chem Eng J 428:131070. https://doi.org/10.1016/j.cej.2021.131070

    Article  CAS  Google Scholar 

  90. Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK (2021) Emerging 2D nanomaterials for biomedical applications. Mater Today. https://doi.org/10.1016/j.mattod.2021.04.020

    Article  Google Scholar 

  91. Yu FY, Chen LY, Li XZ, Shen XS, Zhao H, Duan CY, Chen QW (2021) Cu nanocluster-loaded TiO2 nanosheets for highly efficient generation of CO-free hydrogen by selective photocatalytic dehydrogenation of methanol to formaldehyde. ACS Appl Mater Interfaces 13(16):18619–18626. https://doi.org/10.1021/acsami.0c20116

    Article  CAS  PubMed  Google Scholar 

  92. Jiao WC, Su QM, Ge JJ, Dong SJ, Wang D, Zhang M, Ding SK, Du GH, Xu BS (2021) Mo2C quantum dots decorated ultrathin carbon nanosheets self-assembled into nanoflowers toward highly catalytic cathodes for Li-O2 batteries. Mater Res Bull 133:111020. https://doi.org/10.1016/j.materresbull.2020.111020

    Article  CAS  Google Scholar 

  93. Maity S, Bain D, Bhattacharyya K, Das S, Bera R, Jana B, Paramanik B, Datta A, Patra A (2018) Ultrafast relaxation dynamics of luminescent copper nanoclusters (Cu7L3) and efficient electron transfer to functionalized reduced graphene oxide. J Phys Chem C 122(25):13354–13362. https://doi.org/10.1021/acs.jpcc.7b09959

    Article  CAS  Google Scholar 

  94. Mo FY, Ma ZY, Wu TT, Liu ML, Zhang YY, Li H, Yao SZ (2019) Holey reduced graphene oxide inducing sensitivity enhanced detection nanoplatform for cadmium ions based on glutathione-gold nanocluster. Sens Actuators B 281:486–492. https://doi.org/10.1016/j.snb.2018.10.133

    Article  CAS  Google Scholar 

  95. Zhou XX, Liu B, Chen Y, Guo L, Wei G (2020) Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications. Mater Adv 1(7):2163–2181. https://doi.org/10.1039/D0MA00492H

    Article  CAS  Google Scholar 

  96. Wang ZG, Shi YE, Yang XM, Xiong Y, Li YX, Chen BK, Lai WF, Rogach AL (2018) Water-soluble biocompatible copolymer hypromellose grafted chitosan able to load exogenous agents and copper nanoclusters with aggregation-induced emission. Adv Funct Mater 28(34):1802848. https://doi.org/10.1002/adfm.201802848

    Article  CAS  Google Scholar 

  97. Prochowicz D, Kornowicz A, Lewiński J (2017) Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: fertile landscape for chemistry and materials science. Chem Rev 117(22):13461–13501. https://doi.org/10.1021/acs.chemrev.7b00231

    Article  CAS  PubMed  Google Scholar 

  98. Liu Q, Pu ZH, Asiri AM, Al-Youbi AO, Sun XP (2014) Polydopamine nanospheres: a biopolymer-based fluorescent sensing platform for DNA detection. Sens Actuators B 191:567–571. https://doi.org/10.1016/j.snb.2013.10.050

    Article  CAS  Google Scholar 

  99. Ji XT, Yi BQ, Xu YJ, Zhao YN, Zhong H, Ding CF (2017) A novel fluorescent biosensor for adenosine triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Talanta 169:8–12. https://doi.org/10.1016/j.talanta.2017.03.052

    Article  CAS  PubMed  Google Scholar 

  100. Li TZ, Wang ZG, Jiang DF, Wang HG, Lai WF, Lv YK, Zhai YQ (2019) A FRET biosensor based on MnO2 nanosphere/copper nanocluster complex: From photoluminescence quenching to recovery and magnification. Sens Actuators B 290:535–543. https://doi.org/10.1016/j.snb.2019.04.033

    Article  CAS  Google Scholar 

  101. Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A (2010) Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 36(3):206–215. https://doi.org/10.1016/j.ctrv.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  102. Ghosh I, Ghosh T, Bardagi JI (2014) König B Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346(6210):725. https://doi.org/10.1126/science.1258232

    Article  CAS  PubMed  Google Scholar 

  103. Wang MK, Wang L, Liu Q, Su XG (2018) A fluorescence sensor for protein kinase activity detection based on gold nanoparticles/copper nanoclusters system. Sens Actuators B 256:691–698. https://doi.org/10.1016/j.snb.2017.09.213

    Article  CAS  Google Scholar 

  104. Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Cancer Treat Rev 47(18):7140–7180. https://doi.org/10.1039/c7cs00862g

    Article  CAS  Google Scholar 

  105. Shanmugaraj K, John SA (2018) Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters. New J Chem 42(9):7223–7229. https://doi.org/10.1039/c8nj00789f

    Article  CAS  Google Scholar 

  106. Sylvia JM, Janni JA, Klein JD, Spencer KMJAC (2000) Surface-enhanced raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal Chem 72(23):5834–5840. https://doi.org/10.1021/ac0006573

    Article  CAS  PubMed  Google Scholar 

  107. Germain ME, Knapp MJ (2009) Optical explosives detection: from color changes to fluorescence turn-on. Chem Soc Rev 38(9):2543–2555. https://doi.org/10.1039/b809631g

    Article  CAS  PubMed  Google Scholar 

  108. Patel R, Bothra S, Kumar R, Crisponi G, Sahoo SK (2018) Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips. Biosens Bioelectron 102:196–203. https://doi.org/10.1016/j.bios.2017.11.031

    Article  CAS  PubMed  Google Scholar 

  109. Ni PJ, Sun YJ, Jiang S, Lu WD, Wang YL, Li Z, Li Z (2017) Label-free detection of acetylcholinesterase and its inhibitor based on the in situ formation of fluorescent copper nanoparticles. Sens Actuators B 240:651–656. https://doi.org/10.1016/j.snb.2016.08.096

    Article  CAS  Google Scholar 

  110. Yang JL, Song NZ, Lv XJ, Jia Q (2018) UV-light-induced synthesis of PEI-CuNCs based on Cu2+-quenched fluorescence turn-on assay for sensitive detection of biothiols, acetylcholinesterase activity and inhibitor. Sens Actuators B 259:226–232. https://doi.org/10.1016/j.snb.2017.12.045

    Article  CAS  Google Scholar 

  111. Wang MK, Liu L, Xie XL, Zhou XB, Lin ZH, Su XG (2020) Single-atom iron containing nanozyme with peroxidase-like activity and copper nanoclusters based ratio fluorescent strategy for acetylcholinesterase activity sensing. Sens Actuators B 313.https://doi.org/10.1016/j.snb.2020.128023

  112. Kumar Panigrahi S, Kumar Mishra A (2019) Inner filter effect in fluorescence spectroscopy: as a problem and as a solution. J Photochem Photobiol 41:100318. https://doi.org/10.1016/j.jphotochemrev.2019.100318

    Article  CAS  Google Scholar 

  113. Cui ML, Song G, Wang C, Song QJ (2015) Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Microchim Acta 182(7–8):1371–1377. https://doi.org/10.1007/s00604-015-1458-z

    Article  CAS  Google Scholar 

  114. Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP (2007) XRCC1 interactions with base excision repair DNA intermediates. DNA Repair 6(2):254–264. https://doi.org/10.1016/j.dnarep.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  115. Srinivasan A, Wang LR, Cline CJ, Xie ZJ, Sobol RW, Xie XQ, Gold B (2012) Identification and characterization of human apurinic/apyrimidinic endonuclease-1 inhibitors. Biochemistry 51(31):6246–6259. https://doi.org/10.1021/bi300490r

    Article  CAS  PubMed  Google Scholar 

  116. Condie AG, Yan Y, Gerson SL, Wang YM (2015) A fluorescent probe to measure DNA damage and repair. PLoS ONE 10(8):0131330. https://doi.org/10.1371/journal.pone.0131330

    Article  CAS  Google Scholar 

  117. Singh S, Singh MK, Das P (2018) Biosensing of solitary and clustered abasic site DNA damage lesions with copper nanoclusters and carbon dots. Sens Actuators B 255:763–774. https://doi.org/10.1016/j.snb.2017.08.100

    Article  CAS  Google Scholar 

  118. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741. https://doi.org/10.1039/b105159h

    Article  Google Scholar 

  119. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

    Article  CAS  PubMed  Google Scholar 

  120. Li HY, Lin HY, Lv WX, Gai PP, Li F (2020) Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor. Biosens Bioelectron 165:112336. https://doi.org/10.1016/j.bios.2020.112336

    Article  CAS  PubMed  Google Scholar 

  121. Zhelev Z, Ohba H, Bakalova R (2006) Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc 128(19):6324–6325. https://doi.org/10.1021/ja061137d

    Article  CAS  PubMed  Google Scholar 

  122. Bakalova R, Zhelev Z, Aoki I, Ohba H, Imai Y, Kanno I (2006) Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal Chem 78(16):5925–5932. https://doi.org/10.1021/ac060412b

    Article  CAS  PubMed  Google Scholar 

  123. Han BY, Hou XF, Xiang RC, Yu MB, Li Y, Peng TT, HE GH, (2017) Detection of lead ion based on aggregation-induced emission of copper nanoclusters. Chin J Anal Chem 45(1):23–27. https://doi.org/10.1016/S1872-2040(16)60985-4

    Article  CAS  Google Scholar 

  124. Li WT, Hu XT, Li Q, Shi YQ, Zhai XD, Xu YW, Li ZH, Huang XW, Wang X, Shi JY, Zou XB, Kang SF (2020) Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem 320:126623. https://doi.org/10.1016/j.foodchem.2020.126623

    Article  CAS  PubMed  Google Scholar 

  125. Lin LY, Hu YF, Zhang LL, Huang Y, Zhao SL (2017) Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters. Biosens Bioelectron 94:523–529. https://doi.org/10.1016/j.bios.2017.03.038

    Article  CAS  PubMed  Google Scholar 

  126. Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  127. Ooi K, Shiraki K, Morishita Y, Nobori T (2007) High-molecular intestinal alkaline phosphatase in chronic liver diseases. J Clin Lab Anal 21(3):133–139. https://doi.org/10.1002/jcla.20178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jia L, Xu JP, Li D, Pang SP, Fang Y, Song ZG, Ji J (2010) Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots. Chem Commun 46(38):7166–7168. https://doi.org/10.1039/c0cc01244k

    Article  CAS  Google Scholar 

  129. Nutiu R, Yu JMY, Li YF (2004) Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. ChemBioChem 5(8):1139–1144. https://doi.org/10.1002/cbic.200400026

    Article  CAS  PubMed  Google Scholar 

  130. Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM (2018) Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Microchim Acta 185(2):102. https://doi.org/10.1007/s00604-017-2622-4

    Article  CAS  Google Scholar 

  131. Gong XJ, Wang HP, Liu Y, Hu Q, Gao YF, Yang ZH, Shuang SM, Dong C (2019) A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of curcumin. Anal Chim Acta 1057:132–144. https://doi.org/10.1016/j.aca.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  132. Panigrahi A, Sahu BP, Mandani S, Nayak D, Giri S, Sarma TK (2019) AIE active fluorescent organic nanoaggregates for selective detection of phenolic-nitroaromatic explosives and cell imaging. J Photochem Photobiol A 374:194–205. https://doi.org/10.1016/j.jphotochem.2019.01.029

    Article  CAS  Google Scholar 

  133. Feng HT, Wang JH, Zheng YS (2014) CH3–π Interaction of explosives with cavity of a TPE macrocycle: the key cause for highly selective detection of TNT. ACS Appl Mater Interfaces 6(22):20067–20074. https://doi.org/10.1021/am505636f

    Article  CAS  PubMed  Google Scholar 

  134. Tawfik SM, Sharipov M, Kakhkhorov S, Elmasry MR, Lee YI (2019) Multiple emitting amphiphilic conjugated polythiophenes-coated CdTe QDs for picogram detection of trinitrophenol explosive and application using chitosan film and paper-based sensor coupled with smartphone. Adv Sci 6(2):1801467. https://doi.org/10.1002/advs.201801467

    Article  CAS  Google Scholar 

  135. Wen ZQ, Song SL, Hu TT, Wang CX, Qu FD, Wang P, Yang MH (2019) A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseous H2S. Microchim Acta 186(4):258. https://doi.org/10.1007/s00604-019-3295-y

    Article  CAS  Google Scholar 

  136. Su J, Zhang SP, Wang CR, Li M, Wang JJ, Su F, Wang ZJ (2021) MACA fast and efficient method for detecting H2O2 by a dual-locked model chemosensor. ACS Omega 6(23):14819–14823. https://doi.org/10.1021/acsomega.1c00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mehata MS, Biswas S (2021) Synthesis of fluorescent graphene quantum dots from graphene oxide and their application in fabrication of GQDs@AgNPs nanohybrids and sensing of H2O2. Ceram Int 47(13):19063–19072. https://doi.org/10.1016/j.ceramint.2021.03.252

    Article  CAS  Google Scholar 

  138. Mi W, Tang S, Jin Y, Shao N (2021) Au/Ag bimetallic nanoclusters stabilized by glutathione and lysozyme for ratiometric sensing of H2O2 and hydroxyl radicals. ACS Appl Nano Mater 4(2):1586–1595. https://doi.org/10.1021/acsanm.0c03053

    Article  CAS  Google Scholar 

  139. Qu F, Yang QQ, Wang BJ, You JM (2020) Aggregation-induced emission of copper nanoclusters triggered by synergistic effect of dual metal ions and the application in the detection of H2O2 and related biomolecules. Talanta 207:120289. https://doi.org/10.1016/j.talanta.2019.120289

    Article  CAS  PubMed  Google Scholar 

  140. Han T, Zhu S, Wang S, Wang B, Zhang X, Wang G (2019) Fluorometric methods for determination of H2O2, glucose and cholesterol by using MnO2 nanosheets modified with 5-carboxyfluorescein. Microchim Acta 186(5):269. https://doi.org/10.1007/s00604-019-3381-1

    Article  CAS  Google Scholar 

  141. Yang Z, Liu Y, Lu C, Yue G, Wang Y, Rao H, Zhang W, Lu Z, Wang X (2021) One-pot synthesis of CeO2-carbon dots with enhanced peroxidase-like activity and carbon dots for ratiometric fluorescence detection of H2O2 and cholesterol. J Alloys Compd 862:158323. https://doi.org/10.1016/j.jallcom.2020.158323

    Article  CAS  Google Scholar 

  142. Ding L, Zhang ZY, Li X, Su JH (2013) Highly sensitive determination of low-level water content in organic solvents using novel solvatochromic dyes based on thioxanthone. Chem Commun 49(66):7319–7321. https://doi.org/10.1039/c3cc43608j

    Article  CAS  Google Scholar 

  143. Cheng Y, Sun FF, Zhou YH (2018) Synthesis of copper nanoclusters stabilized by 2-amino-5-mercapto-1, 3, 4 -thiadiazole and acetate simultaneously and as a sensitive sensor for detecting trace water in organic solvents. J Lumin 197:376–382. https://doi.org/10.1016/j.jlumin.2018.01.055

    Article  CAS  Google Scholar 

  144. Yang JL, Li Z, Jia Q (2019) Design of dual-emission fluorescence sensor based on Cu nanoclusters with solvent-dependent effects: visual detection of water via a smartphone. Sens Actuators B 297.https://doi.org/10.1016/j.snb.2019.126807

  145. Lu SS, Wang S, Chen CX, Sun J, Yang XR (2018) Enzyme-free aptamer/AuNPs-based fluorometric and colorimetric dual-mode detection for ATP. Sens Actuators B 265:67–74. https://doi.org/10.1016/j.snb.2018.02.003

    Article  CAS  Google Scholar 

  146. Wang J, Jiang YX, Zhou CS, Fang XH (2005) Aptamer-based ATP assay using a luminescent light switching complex. Anal Chem 77(11):3542–3546. https://doi.org/10.1021/ac050165w

    Article  CAS  PubMed  Google Scholar 

  147. Li X, Peng Y, Chai YQ, Yuan R, Xiang Y (2016) A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun 52(18):3673–3676. https://doi.org/10.1039/c6cc00110f

    Article  CAS  Google Scholar 

  148. Zhang BZ, Wei CY (2020) The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters. Anal Bioanal Chem 412(11):2529–2536. https://doi.org/10.1007/s00216-020-02476-0

    Article  CAS  PubMed  Google Scholar 

  149. Reda A, El-Safty SA, Selim MM, Shenashen MA (2021) Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 185:113237. https://doi.org/10.1016/j.bios.2021.113237

    Article  CAS  PubMed  Google Scholar 

  150. Gou SY, Shi YE, Li P, Wang HG, Li TZ, Zhuang XM, Li W, Wang ZG (2019) Stimuli-responsive luminescent copper nanoclusters in alginate and their sensing ability for glucose. ACS Appl Mater Interfaces 11(6):6561–6567. https://doi.org/10.1021/acsami.8b20835

    Article  CAS  PubMed  Google Scholar 

  151. Pellegrino L, Tirelli A (2000) A sensitive HPLC method to detect hen’s egg white lysozyme in milk and dairy products. Int Dairy J 10(7):435–442. https://doi.org/10.1016/S0958-6946(00)00065-0

    Article  CAS  Google Scholar 

  152. Zhou TY, Lin LP, Rong MC, Jiang YQ, Chen X (2013) Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal Chem 85(20):9839–9844. https://doi.org/10.1021/ac4023764

    Article  CAS  PubMed  Google Scholar 

  153. Yao QF, Feng Y, Fung V, Yu Y, Jiang DE, Yang J, Xie JP (2017) Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat Commun 8(1):1555. https://doi.org/10.1038/s41467-017-01736-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cai LP, Zhan RY, Pu KY, Qi XY, Zhang H, Huang W, Liu B (2011) Butterfly-shaped conjugated oligoelectrolyte/graphene oxide integrated assay for light-up visual detection of heparin. Anal Chem 83(20):7849–7855. https://doi.org/10.1021/ac2016135

    Article  CAS  PubMed  Google Scholar 

  155. Wang XD, Meier RJ, Wolfbeis OS (2013) Fluorescent pH-sensitive nanoparticles in an agarose matrix for imaging of bacterial growth and metabolism. Angew Chem Int Ed 52(1):406–409. https://doi.org/10.1002/anie.201205715

    Article  CAS  Google Scholar 

  156. Song SL, Zhao Y, Li Y, Yang XD, Wang D, Wen ZQ, Yang MH, Lin Q (2021) pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta 221:121621. https://doi.org/10.1016/j.talanta.2020.121621

    Article  CAS  PubMed  Google Scholar 

  157. Zhao Y, Zhou HM, Zhang SJ, Xu JH (2019) The synthesis of metal nanoclusters and their applications in bio-sensing and imaging. Methods Appl Fluoresc 8(1):012001. https://doi.org/10.1088/2050-6120/ab57e7

    Article  CAS  PubMed  Google Scholar 

  158. Xu J, Shang L (2018) Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. Chin Chem Lett 29(10):1436–1444. https://doi.org/10.1016/j.cclet.2017.12.020

    Article  CAS  Google Scholar 

  159. Cui HD, Hu DH, Zhang JN, Gao GH, Zheng CF, Gong P, Xi XH, Sheng ZH, Cai LT (2017) Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy. Chin Chem Lett 28(7):1391–1398. https://doi.org/10.1016/j.cclet.2016.12.038

    Article  CAS  Google Scholar 

  160. Ao H, Feng H, Pan S, Bao Z, Li Z, Chen J, Qian Z (2018) Synthesis and functionalization of stable and bright copper nanoclusters by in situ generation of silica shells for bioimaging and biosensing. ACS Appl Nano Mater 1(10):5673–5681. https://doi.org/10.1021/acsanm.8b01286

    Article  CAS  Google Scholar 

  161. Dutta A, Goswami U, Chattopadhyay A (2018) Probing cancer cells through intracellular aggregation-induced emission kinetic rate of copper nanoclusters. ACS Appl Mater Interfaces 10(23):19459–19472. https://doi.org/10.1021/acsami.8b05160

    Article  CAS  PubMed  Google Scholar 

  162. Ramadurai M, Rajendran G, Bama TS, Prabhu P, Kathiravan K (2020) Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells. J Photochem Photobiol 205:111845. https://doi.org/10.1016/j.jphotobiol.2020.111845

    Article  CAS  Google Scholar 

  163. Zhao T, He XW, Li WY, Zhang YK (2015) Transferrin-directed preparation of red-emitting copper nanoclusters for targeted imaging of transferrin receptor over-expressed cancer cells. J Mater Chem B 3(11):2388–2394. https://doi.org/10.1039/c4tb02130d

    Article  CAS  PubMed  Google Scholar 

  164. Yue DF, Wang ML, Deng F, Yin WT, Zhao HD, Zhao XM, Xu ZC (2018) Biomarker-targeted fluorescent probes for breast cancer imaging. Chin Chem Lett 29(5):648–656. https://doi.org/10.1016/j.cclet.2018.01.046

    Article  CAS  Google Scholar 

  165. Heo GS, Zhao YF, Sultan D, Zhang XH, Detering L, Luehmann HP, Zhang XY, Li RC, Choksi A, Sharp S, Levingston S, Primeau T, Reichert DE, Sun G, Razani B, Li SQ, Weilbaecher KN, Dehdashti F, Wooley KL, Liu YJ (2019) Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation. ACS Appl Mater Interfaces 11(22):19669–19678. https://doi.org/10.1021/acsami.8b22752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang CX, Cheng H, Sun YQ, Lin Q, Zhang C (2015) Rapid sonochemical synthesis of luminescent and paramagnetic copper nanoclusters for bimodal bioimaging. ChemNanoMat 1(1):27–31. https://doi.org/10.1002/cnma.201500004

    Article  CAS  Google Scholar 

  167. Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A (2018) Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl Mater Interfaces 10(4):3282–3294. https://doi.org/10.1021/acsami.7b15165

    Article  CAS  PubMed  Google Scholar 

  168. Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116. https://doi.org/10.1007/s11095-008-9661-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21(12):1471–1482. https://doi.org/10.1634/theoncologist.2015-0164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nerthigan Y, Sharma AK, Pandey S, Wu HF (2019) Cysteine capped copper/molybdenum bimetallic nanoclusters for fluorometric determination of methotrexate via the inner filter effect. Microchim Acta 186(3):130. https://doi.org/10.1007/s00604-019-3230-2

    Article  CAS  Google Scholar 

  171. Zhou J, Qi GB, Wang H (2016) A purpurin-peptide derivative for selective killing of gram-positive bacteria via insertion into cell membrane. J Mater Chem B 4(28):4855–4861. https://doi.org/10.1039/c6tb00406g

    Article  CAS  PubMed  Google Scholar 

  172. Wang HY, Hua XW, Wu FG, Li B, Liu P, Gu N, Wang Z, Chen Z (2015) Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl Mater Interfaces 7(13):7082–7092. https://doi.org/10.1021/acsami.5b01214

    Article  CAS  PubMed  Google Scholar 

  173. Edris H, Pouran M, Parisa T, Hooshyar H, John S, Mohammad Amjad K, Ghulam MdA (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128

    Article  Google Scholar 

  174. Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, Choi I (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20(10):2468. https://doi.org/10.3390/ijms20102468

    Article  CAS  PubMed Central  Google Scholar 

  175. Xu Y, Wei MT, Ou-Yang HD, Walker SG, Wang HZ, Gordon CR, Guterman S, Zawacki E, Applebaum E, Brink PR, Rafailovich M, Mironava T (2016) Exposure to TiO2 nanoparticles increases staphylococcus aureus infection of HeLa cells. J Nanobiotechnol 14:34. https://doi.org/10.1186/s12951-016-0184-y

    Article  CAS  Google Scholar 

  176. Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT (2020) Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. J Hazard Mater 389:121821. https://doi.org/10.1016/j.jhazmat.2019.121821

    Article  CAS  PubMed  Google Scholar 

  177. Xia JM, Wang WJ, Hai X, E S, Shu Y, Wang JH, (2019) Improvement of antibacterial activity of copper nanoclusters for selective inhibition on the growth of gram-positive bacteria. Chin Chem Lett 30(2):421–424. https://doi.org/10.1016/j.cclet.2018.07.008

    Article  CAS  Google Scholar 

  178. Callewaert C, De Maeseneire E, Kerckhof FM, Verliefde A, Van de Wiele T, Boon N (2014) Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80(21):6611–6619. https://doi.org/10.1128/aem.01422-14

    Article  PubMed  PubMed Central  Google Scholar 

  179. Andra S, Balu SK, Jeevanandam J, Muthalagu M (2021) Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg’s Arch Pharmacol 394(7):1355–1382. https://doi.org/10.1007/s00210-021-02064-8

    Article  CAS  Google Scholar 

Download references

Funding

The project was supported by the Jilin Provincial Science & Technology Department, China (No. 20190201079JC); the “Thirteenth Five Year” Project of Science and Technology Research in the Education Department of Jilin Province (Grant No. 40542); and the State Key Laboratory of Inorganic Synthesis, Preparative Chemistry, College of Chemistry, Jilin University, China (2019–4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Zhang or Qiong Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, J., Peng, Y., Shi, Z. et al. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Microchim Acta 188, 384 (2021). https://doi.org/10.1007/s00604-021-05011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05011-9

Keywords

Navigation