Skip to main content
Log in

A proposed implantable voltammetric carbon fiber–based microsensor for corticosteroid monitoring by cochlear implants

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel carbon fiber microsensor (CFMS) with the capability of being inserted in the cochlear implant structure is introduced for in situ measurement of corticosteroid concentration. The microsensor structure is composed of a carbon microfiber, an Ag wire, and a Pt wire acting respectively as a working electrode, a reference electrode, and a counter electrode. In addition, a silicone septum is used for isolation purposes in place of the epoxy resin. The septum-insulated microsensor is capable of monitoring the concentration of the corticosteroids in the perilymph fluid without a need for sampling from the inner ear fluid and the consequent ex vivo analysis. The electrochemical determination of the corticosteroids was investigated on the carbon fiber electrode surface by differential pulse voltammetry. During the reduction of dexamethasone (DEX), a cathodic peak with a peak potential of −1.3 V appeared at the CFMS. Using the CFMS under optimized conditions, a calibration plot of the dexamethasone (DEX) in the artificial perilymph solution exhibited two linear ranges from 10 nM to 2 μM and 2 to 40 μM (sensitivity equal to 16.55 μA μM−1 cm−2; LOD = 4 nM) conforming with the DEX concentration range inside the inner ear after the insertion of a drug-eluting cochlear implant electrode (CIE). Furthermore, the interferences occurring in the hearing functions of the CIE after the presence and function of the CFMS were simulated numerically using the finite element method. According to our results, decreasing the size of the microsensor introduces lower interferences with the auditory function of the cochlear implant electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Astolfi L, Guaran V, Marchetti N, Olivetto E, Simoni E, Cavazzini A, Jolly C, Martini A (2014) Cochlear implants and drug delivery: In vitro evaluation of dexamethasone release. J Biomed Mater Res Part B Appl Biomater 102:267–273

    Article  Google Scholar 

  2. Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC (2008) Localized cell and drug delivery for auditory prostheses. Hear Res 242:117–131

    Article  CAS  Google Scholar 

  3. Mynatt R, Hale SA, Gill RM, Plontke SK, Salt AN (2006) Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex. J Assoc Res Otolaryngol 7:182–193

    Article  Google Scholar 

  4. Lee C, Yang W, Parr R (1988) Becke’s three parameter hybrid method using the LYP. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  5. Mao X, Tian W, Hatton TA, Rutledge GC (2016) Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications. Anal Bioanal Chem 408:1307–1326

    Article  CAS  Google Scholar 

  6. Sun G, Wang X, Chen P (2015) Microfiber devices based on carbon materials. Mater Today 18:215–226

    Article  CAS  Google Scholar 

  7. Hahn H, Kammerer B, DiMauro A, Salt AN, Plontke SK (2006) Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration. Hear Res 212:236–244

    Article  CAS  Google Scholar 

  8. Salt AN, Kellner C, Hale S (2003) Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hear Res 182:24–33

    Article  Google Scholar 

  9. Chang F, Xie X, Li M, Zhu Z (2016) A miniaturized electrochemical device integrating a biconical microchannel and carbon fiber disk ultramicroelectrode. Analyst 141:4859–4862

    Article  CAS  Google Scholar 

  10. El-Rahman MKA, Lotfy HM, Hegazy MA, Rezk MR, Omran YR, (n.d.) A novel sensor for determination of dexamethasone disodium phosphate in different pharmaceutical formulations

  11. Zestos AG, Nguyen MD, Poe BL, Jacobs CB, Venton BJ (2013) Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes. Sensors Actuators B Chem 182:652–658

    Article  CAS  Google Scholar 

  12. Sekar M, Pandiaraj M, Bhansali S, Ponpandian N, Viswanathan C (2019) Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci Rep 9:1–14

    Article  CAS  Google Scholar 

  13. Madhu S, Anthuuvan AJ, Ramasamy S, Manickam P, Bhansali S, Nagamony P, Chinnuswamy V (2020) ZnO nanorod integrated flexible carbon fibers for sweat cortisol detection. ACS Applied Electronic Materials 2:499–509

    Article  CAS  Google Scholar 

  14. Cheng C-C, Young M-S, Chuang C-L, Chang C-C(2003) Fabrication optimisation of carbon fiber electrode with Taguchi method. Biosens Bioelectron 18:847–855

    Article  CAS  Google Scholar 

  15. Xiang L, Yu P, Hao J, Zhang M, Zhu L, Dai L, Mao L (2014) Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo. Anal Chem 86:3909–3914

    Article  CAS  Google Scholar 

  16. Liu J, Yu P, Lin Y, Zhou N, Li T, Ma F, Mao L (2012) In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus. Anal Chem 84:5433–5438

    Article  CAS  Google Scholar 

  17. Bai J, Wang X, Meng Y, Zhang H-M, Qu L (2014) Fabrication of graphene coated carbon fiber microelectrode for highly sensitive detection application. Anal Sci 30:903–909

    Article  CAS  Google Scholar 

  18. Cvacˇka J, Quaiserova V, Park J, Show Y, Muck A, Swain GM (2003)Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection. Anal Chem 75:2678–2687

    Article  Google Scholar 

  19. Harreither W, Trouillon Rl, Poulin P, Neri W, Ewing AG, Safina G (2013) Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling. Anal Chem 85:7447–7453

    Article  CAS  Google Scholar 

  20. Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C (2013) Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids Surf A Physicochem Eng Asp 419:94–99

    Article  CAS  Google Scholar 

  21. Cahill PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER, Wightman RM (1996) Microelectrodes for the measurement of catecholamines in biological systems. Anal Chem 68:3180–3186

    Article  CAS  Google Scholar 

  22. Earl CD, Sautter J, Xie J, Kruk ZL, Kupsch A, Oertel WH (1998) Pharmacological characterisation of dopamine overflow in the striatum of the normal and MPTP-treated common marmoset, studied in vivo using fast cyclic voltammetry, nomifensine and sulpiride. J Neurosci Methods 85:201–209

    Article  CAS  Google Scholar 

  23. Schulte A, Chow RH (1996) A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint. Anal Chem 68:3054–3058

    Article  CAS  Google Scholar 

  24. Strein TG, Ewing AG (1992) Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal Chem 64:1368–1373

    Article  CAS  Google Scholar 

  25. Erixon E, Högstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otology & Neurotology 30:14–22

    Article  Google Scholar 

  26. Alimohammadi S, Kiani MA, Imani M, Rafii-Tabar H, Sasanpour P (2019) Electrochemical determination of dexamethasone by graphene modified electrode: experimental and theoretical investigations. Sci Rep 9:11775

    Article  Google Scholar 

  27. Greenbaum E, David Zhou (2009) Implantable neural prostheses 1: Devices and applications. Springer US. 87

  28. Lawand NS, van Driel J, French PJ (2012) Electric field density distribution for cochlear implant electrodes. Proceedings 2012 8th Annual Conference on Multiphysics Simulation and its Applications (pp. 1-4)

  29. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  Google Scholar 

  30. Häusser M (2000) The Hodgkin-Huxley theory of the action potential. Nat Neurosci 3:1165–1165

    Article  Google Scholar 

  31. Ma Y, Wang J, Cai X (2013) The effect of electrolyte on surface composite and microstructure of carbon fiber by electrochemical treatment. Int J Electrochem Sci 8

  32. De Boer H, Den Hartigh J, Ploegmakers H, Van Oort W (1978) Polarographic analysis for corticosteroids: part 1. The electroanalytical properties of corticosteroids. Anal Chim Acta 102:141–155

    Article  Google Scholar 

  33. Goyal RN, Gupta VK, Chatterjee S (2009) A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping. Biosens Bioelectron 24:3562–3568

    Article  CAS  Google Scholar 

  34. Goyal RN, Gupta VK, Chatterjee S (2009)Fullerene-C 60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens Bioelectron 24:1649–1654

    Article  CAS  Google Scholar 

  35. Jeyaseelan C, Joshi A (2002) Trace determination of dexamethasone sodium phosphate in pharmaceutical formulations by differential pulse polarography. Anal Bioanal Chem 373:772–776

    Article  CAS  Google Scholar 

  36. Goyal RN, Chatterjee S, Rana ARS (2010) Effect of cetyltrimethyl ammonium bromide on electrochemical determination of dexamethasone. Electroanalysis 22:2330–2338

    Article  CAS  Google Scholar 

  37. Oliveira TMB, Ribeiro FWP, Soares JE, de Lima-Neto P, Correia AN (2011)Square-wave adsorptive voltammetry of dexamethasone: redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations. Anal Biochem 413:148–156

    Article  CAS  Google Scholar 

  38. Rezaei B, Zare S, Ensafi AA (2011) Square wave voltammetric determination of dexamethasone on a multiwalled carbon nanotube modified pencil electrode. J Braz Chem Soc 22:897–904

    Article  CAS  Google Scholar 

  39. Mehennaoui S, Poorahong S, Jimenez GC, Siaj M (2019) Selection of high affinity aptamer-ligand for dexamethasone and its electrochemical biosensor. Sci Rep 9:1–9

    Article  CAS  Google Scholar 

  40. Wang X, Yan T, Li Y, Liu Y, Du B, Ma H, Wei Q (2015) A competitive photoelectrochemical immunosensor based on a CdS-induced signal amplification strategy for the ultrasensitive detection of dexamethasone. Sci Rep 5:1–8

    Google Scholar 

  41. Gupta S, kumar Singh S, Dubey PK (2012) Cochlear Implant Using Neural Prosthetics. International Journal of Advancements in Research & Technology 1(5):266–272

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ali Kiani, Mohammad Imani or Pezhman Sasanpour.

Ethics declarations

Conflict of interest

The authors declare the following competing financial interests: Four authors (Somayeh Alimohammadi, Mohammad Imani, Mohammad Ali Kiani, and Pezhman Sasanpour) have filed a non-provisional patent application on the technology described in this paper. The remaining author declares that he has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimohammadi, S., Kiani, .A., Imani, M. et al. A proposed implantable voltammetric carbon fiber–based microsensor for corticosteroid monitoring by cochlear implants. Microchim Acta 188, 357 (2021). https://doi.org/10.1007/s00604-021-04994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04994-9

Keywords

Navigation