Skip to main content

Advertisement

Log in

Long-term In Vivo Monitoring of Chemicals with Fiber Sensors

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Long-term in vivo monitoring of chemicals with implanted sensors has received considerable interests over the past decades owing to their significant contributions in reflecting health conditions and assistance in diagnosing diseases. However, the widely explored chemical sensors outside the body fail to meet the requirements of in vivo applications. This perspective reviews main challenges, recent advances and future directions of long-term in vivo monitoring of chemicals, related to immune response and sensing performance. Challenges in terms of the immune response caused by unstable interfaces between sensors and tissues and improper implanting methods, and the insufficient performance of chemical sensors in complex physiological environment are discussed. Therewith, recent advances in fabricating biocompatible, flexible and thin sensors, developing effective implanting methods with reduced injury and improving the sensitivity, selectivity and stability of chemical sensors for accurate monitoring in vivo are summarized. Finally, we propose the future directions to address these challenges by fiber chemical sensors through the combination of soft fiber configuration, facile implanting methods and new recognition elements, which will provide new platforms for health monitoring and physiological mechanism revealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Labib M, Sargent EH, Kelley SO. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev. 2016;116:9001.

    CAS  Google Scholar 

  2. Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest trends in electrochemical sensors for neurotransmitters: a review. Sensors (Basel). 2019;19:2037.

    CAS  Google Scholar 

  3. Rasmussen R, O’Donnell J, Ding F, Nedergaard M. Interstitial ions: a key regulator of state-dependent neural activity? Prog Neurobiol. 2020;193:101802.

    CAS  Google Scholar 

  4. Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion channels in neurological disorders. Adv Protein Chem Struct Biol. 2016;103:97.

    CAS  Google Scholar 

  5. Ngernsutivorakul T, White TS, Kennedy RT. Microfabricated probes for studying brain chemistry: a review. ChemPhysChem. 2018;19:1128.

    CAS  Google Scholar 

  6. Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng. 2017;1:862.

    CAS  Google Scholar 

  7. Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019;20:330.

    CAS  Google Scholar 

  8. Xu C, Wu F, Yu P, Mao L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sensors. 2019;4:3102.

    CAS  Google Scholar 

  9. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater. 2016;1:16063.

    CAS  Google Scholar 

  10. Wu X, Peng H. Polymer-based flexible bioelectronics. Sci Bull. 2019;64:634.

    CAS  Google Scholar 

  11. Feiner R, Dvir T. Tissue-electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater. 2017;3:16063.

    Google Scholar 

  12. Kozai TD, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6:48.

    CAS  Google Scholar 

  13. Chatard C, Sabac A, Moreno-Velasquez L, Meiller A, Marinesco S. Minimally invasive microelectrode biosensors based on platinized carbon fibers for in vivo brain monitoring. ACS Cent Sci. 2018;4:1751.

    CAS  Google Scholar 

  14. Vasylieva N, Marinesco S, Barbier D, Sabac A. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring. Biosens Bioelectron. 2015;72:148.

    CAS  Google Scholar 

  15. Ling W, Yu J, Ma N, Li Y, Wu Z, Liang R, Hao Y, Pan H, Liu W, Fu B, Wang K, Wang H, Li L, Sheng X, Peng H, Ning B, Yang J, Huang X. Flexible electronics and materials for synchronized stimulation and monitoring in multi-encephalic regions. Adv Funct Mater. 2020;30:2002644.

    CAS  Google Scholar 

  16. Yetisen AK, Jiang N, Fallahi A, Montelongo Y, Ruiz-Esparza GU, Tamayol A, Zhang YS, Mahmood I, Yang SA, Kim KS, Butt H, Khademhosseini A, Yun SH. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv Mater. 2017;29:1606380.

    Google Scholar 

  17. Liu Y, Liu J, Chen S, Lei T, Kim Y, Niu S, Wang H, Wang X, Foudeh AM, Tok JB, Bao Z. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019;3:58.

    CAS  Google Scholar 

  18. Acaron Ledesma H, Li X, Carvalho-de-Souza JL, Wei W, Bezanilla F, Tian B. An atlas of nano-enabled neural interfaces. Nat Nanotechnol. 2019;14:645.

    CAS  Google Scholar 

  19. Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng. 2020;4:159.

    CAS  Google Scholar 

  20. Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PE. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods. 2010;7:126.

    CAS  Google Scholar 

  21. Schwerdt HN, Shimazu H, Amemori K-i, Amemori S, Tierney PL, Gibson DJ, Hong S, Yoshida T, Langer R, Cima MJ, Graybiel AM. Long-term dopamine neurochemical monitoring in primates. Proc Natl Acad Sci. 2017;114:13260.

    CAS  Google Scholar 

  22. Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater. 2018;28:1804456.

    Google Scholar 

  23. Du ZJ, Kolarcik CL, Kozai TDY, Luebben SD, Sapp SA, Zheng XS, Nabity JA, Cui XT. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 2017;53:46.

    CAS  Google Scholar 

  24. Kozai TDY, Gugel Z, Li X, Gilgunn PJ, Khilwani R, Ozdoganlar OB, Fedder GK, Weber DJ, Cui XT. Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials. 2014;35:9255.

    CAS  Google Scholar 

  25. Apollo NV, Jiang J, Cheung W, Baquier S, Lai A, Mirebedini A, Foroughi J, Wallace GG, Shivdasani MN, Prawer S, Chen S, Williams R, Cook MJ, Nayagam DAX, Garrett DJ. Development and characterization of a sucrose microneedle neural electrode delivery system. Adv Biosyst. 2018;2:1700187.

    Google Scholar 

  26. Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, Zou L, Gao L, Du M, Li C, Fang Y. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv. 2019;5:2842.

    Google Scholar 

  27. Tang C, Xie S, Wang M, Feng J, Han Z, Wu X, Wang L, Chen C, Wang J, Jiang L, Chen P, Sun X, Peng H. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain interfaces. J Mater Chem B. 2020;8:4387.

    CAS  Google Scholar 

  28. Vitale F, Vercosa DG, Rodriguez AV, Pamulapati SS, Seibt F, Lewis E, Yan JS, Badhiwala K, Adnan M, Royer-Carfagni G, Beierlein M, Kemere C, Pasquali M, Robinson JT. Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 2017;18:326.

    Google Scholar 

  29. Liu J, Fu T-M, Cheng Z, Hong G, Zhou T, Jin L, Duvvuri M, Jiang Z, Kruskal P, Xie C, Suo Z, Fang Y, Lieber CM. Syringe-injectable electronics. Nat Nanotechnol. 2015;10:629.

    CAS  Google Scholar 

  30. Sheng H, Wang X, Kong N, Xi W, Yang H, Wu X, Wu K, Li C, Hu J, Tang J, Zhou J, Duan S, Wang H, Suo Z. Neural interfaces by hydrogels. Extreme Mech Lett. 2019;30:100510.

    Google Scholar 

  31. Taylor IM, Patel NA, Freedman NC, Castagnola E, Cui XT. Direct in vivo electrochemical detection of resting dopamine using poly(3,4-ethylenedioxythiophene)/carbon nanotube functionalized microelectrodes. Anal Chem. 2019;91:12917.

    CAS  Google Scholar 

  32. Vasylieva N, Maucler C, Meiller A, Viscogliosi H, Lieutaud T, Barbier D, Marinesco S. Immobilization method to preserve enzyme specificity in biosensors: consequences for brain glutamate detection. Anal Chem. 2013;85:2507.

    CAS  Google Scholar 

  33. Oh Y, Heien ML, Park C, Kang YM, Kim J, Boschen SL, Shin H, Cho HU, Blaha CD, Bennet KE, Lee HK, Jung SJ, Kim IY, Lee KH, Jang DP. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens Bioelectron. 2018;121:174.

    CAS  Google Scholar 

  34. Yu H, Ma Z, Wu Z. Immobilization of Ni-Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection. Anal Chim Acta. 2015;896:137.

    CAS  Google Scholar 

  35. Wu X, Feng J, Deng J, Cui Z, Wang L, Xie S, Chen C, Tang C, Han Z, Yu H, Sun X, Peng H. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci China Chem. 2020;63:1281.

    CAS  Google Scholar 

  36. Nakatsuka N, Yang KA, Abendroth JM, Cheung KM, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y, Weiss PS, Stojanovic MN, Andrews AM. Aptamer-field-effect transistors overcome debye length limitations for small-molecule sensing. Science. 2018;362:319.

    CAS  Google Scholar 

  37. Lee JS, Oh J, Kim SG, Jang J. Highly sensitive and selective field-effect-transistor nonenzyme dopamine sensors based on pt/conducting polymer hybrid nanoparticles. Small. 2015;11:2399.

    CAS  Google Scholar 

  38. Li B-R, Hsieh Y-J, Chen Y-X, Chung Y-T, Pan C-Y, Chen Y-T. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J Am Chem Soc. 2013;135:16034.

    CAS  Google Scholar 

  39. Kergoat L, Piro B, Simon DT, Pham M-C, Noël V, Berggren M. Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites. Adv Mater. 2014;26:5658.

    CAS  Google Scholar 

  40. Robinson DL, Hermans A, Seipel AT, Wightman RM. Monitoring rapid chemical communication in the brain. Chem Rev. 2008;108:2554.

    CAS  Google Scholar 

  41. Chauhan N, Soni S, Agrawal P, Balhara YPS, Jain U. Recent advancement in nanosensors for neurotransmitters detection: present and future perspective. Process Biochem. 2020;91:241.

    CAS  Google Scholar 

  42. Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L. Gold nanoparticle-decorated mos2 nanosheets for simultaneous detection of ascorbic acid dopamine and uric acid. RSC Adv. 2014;4:27625.

    CAS  Google Scholar 

  43. Durairaj V, Wester N, Etula J, Laurila T, Lehtonen J, Rojas OJ, Pahimanolis N, Koskinen J. Multiwalled carbon nanotubes/nanofibrillar cellulose/nafion composite-modified tetrahedral amorphous carbon electrodes for selective dopamine detection. J Phys Chem C. 2019;123:24826.

    CAS  Google Scholar 

  44. Jiang J, Du X. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale. 2014;6:11303.

    CAS  Google Scholar 

  45. Zhang L, Liu F, Sun X, Wei GF, Tian Y, Liu ZP, Huang R, Yu Y, Peng H. Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of alzheimer’s disease. Anal Chem. 2017;89:1831.

    CAS  Google Scholar 

  46. Killoran SJ, O’Neill RD. Characterization of Permselective coatings electrosynthesized on Pt–Ir from the three phenylenediamine isomers for biosensor applications. Electrochim Acta. 2008;53:7303.

    CAS  Google Scholar 

  47. Meiller A, Sequeira E, Marinesco S. Electrochemical nitric oxide microsensors based on a fluorinated xerogel screening layer for in vivo brain monitoring. Anal Chem. 2020;92:1804.

    CAS  Google Scholar 

  48. Ganesana M, Trikantzopoulos E, Maniar Y, Lee ST, Venton BJ. Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain. Biosens Bioelectron. 2019;130:103.

    CAS  Google Scholar 

  49. Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH. Fluorinated xerogel-derived microelectrodes for amperometric nitric oxide sensing. Anal Chem. 2008;80:6850.

    CAS  Google Scholar 

  50. Liu L, Zhao F, Liu W, Zhu T, Zhang JZH, Chen C, Dai Z, Peng H, Huang JL, Hu Q, Bu W, Tian Y. An electrochemical biosensor with dual signal outputs: toward simultaneous quantification of pH and O2 in the brain upon ischemia and in a tumor during cancer starvation therapy. Angew Chem Int Ed. 2017;56:10471.

    CAS  Google Scholar 

  51. Ma CB, Zhang Y, Liu Q, Du Y, Wang E. enhanced stability of enzyme immobilized in rationally designed amphiphilic aerogel and its application for sensitive glucose detection. Anal Chem. 2020;92:5319.

    CAS  Google Scholar 

  52. Kim DM, Moon JM, Lee WC, Yoon JH, Choi CS, Shim YB. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron. 2017;91:276.

    CAS  Google Scholar 

  53. Dhanjai, Lu X, Wu L, Chen J, Lu Y. Robust single-molecule enzyme nanocapsules for biosensing with significantly improved biosensor stability. Anal Chem. 2020;92:5830.

    CAS  Google Scholar 

  54. Sehit E, Altintas Z. Significance of nanomaterials in electrochemical glucose sensors: an updated review (2016–2020). Biosens Bioelectron. 2020;159:112165.

    CAS  Google Scholar 

  55. Shim K, Lee W-C, Park M-S, Shahabuddin M, Yamauchi Y, Hossain MSA, Shim Y-B, Kim JH. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction. Sensors Actuators B Chem. 2019;278:88.

    CAS  Google Scholar 

  56. Zhao Y, Fan L, Hong B, Ren J, Zhang M, Que Q, Ji J. Nonenzymatic detection of glucose using three-dimensional ptni nanoclusters electrodeposited on the multiwalled carbon nanotubes. Sensors Actuators B Chem. 2016;231:800.

    CAS  Google Scholar 

  57. Villalonga A, Perez-Calabuig AM, Villalonga R. Electrochemical biosensors based on nucleic acid aptamers. Anal Bioanal Chem. 2020;412:55.

    CAS  Google Scholar 

  58. Guo T, Wu C, Offenhäusser A, Mayer D. A novel ratiometric electrochemical biosensor based on a split aptamer for the detection of dopamine with logic gate operations. Phys Status Solidi A. 2020;217:1900924.

    CAS  Google Scholar 

  59. Zhu S, Nih L, Carmichael ST, Lu Y, Segura T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv Mater. 2015;27:3620.

    CAS  Google Scholar 

  60. Canales A, Park S, Kilias A, Anikeeva P. Multifunctional fibers as tools for neuroscience and neuroengineering. Acc Chem Res. 2018;51:829.

    CAS  Google Scholar 

  61. Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, Anikeeva P. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol. 2015;33:277.

    CAS  Google Scholar 

  62. Park S, Guo Y, Jia X, Choe HK, Grena B, Kang J, Park J, Lu C, Canales A, Chen R, Yim YS, Choi GB, Fink Y, Anikeeva P. One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci. 2017;20:612.

    CAS  Google Scholar 

  63. Du M, Huang L, Zheng J, Xi Y, Dai Y, Zhang W, Yan W, Tao G, Qiu J, So KF, Ren C, Zhou S. Flexible fiber probe for efficient neural stimulation and detection. Adv Sci (Weinh). 2020;7:2001410.

    CAS  Google Scholar 

  64. Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev. 2019;48:1826.

    CAS  Google Scholar 

  65. Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today. 2020;35:168.

    CAS  Google Scholar 

  66. Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater. 2019;31:e1802348.

    Google Scholar 

  67. Yan W, Qu Y, Gupta TD, Darga A, Nguyen DT, Page AG, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Adv Mater. 2017;29:1700681.

    Google Scholar 

  68. Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater. 2020;32:e1904911.

    Google Scholar 

  69. Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen-Dang T, Das Gupta T, Qu Y, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Loffler JF, Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol. 2020;15:875.

    CAS  Google Scholar 

  70. Frank JA, Antonini MJ, Anikeeva P. Next-generation interfaces for studying neural function. Nat Biotechnol. 2019;37:1013.

    CAS  Google Scholar 

  71. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater. 2020;32:e1901971.

    Google Scholar 

  72. Lu C, Park S, Richner TJ, Derry A, Brown I, Hou C, Rao S, Kang J, Mortiz CT, Fink Y, Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv. 2017;3:e1600955.

    Google Scholar 

  73. Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A, Su C-J, Xu Y, Haney CR, Waters EA, Kandela I, Krishnan SR, Ray T, Leshock JP, Huang Y, Chanda D, Rogers JA. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat Electron. 2018;1:652.

    Google Scholar 

  74. Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, Pullen MY, Noh KN, Davidson S, Oh SJ, Yoon J, Jang KI, Samineni VK, Norman M, Grajales-Reyes JG, Vogt SK, Sundaram SS, Wilson KM, Ha JS, Xu R, Pan T, Kim TI, Huang Y, Montana MC, Golden JP, Bruchas MR, Gereau RWt, Rogers JA. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33:1280.

    CAS  Google Scholar 

  75. Zhang M, Tang Z, Liu X, Van der Spiegel J. Electronic neural interfaces. Nat Electron. 2020;3:191.

    Google Scholar 

  76. Wu F, Yu P, Mao L. Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry. Chem Soc Rev. 2017;46:2692.

    CAS  Google Scholar 

  77. Yu P, Wei H, Zhong P, Xue Y, Wu F, Liu Y, Fei J, Mao L. Single-carbon-fiber-powered microsensor for in vivo neurochemical sensing with high neuronal compatibility. Angew Chem Int Ed. 2020;59:22652. https://doi.org/10.1002/anie.202010195.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by NSFC (21634003, 51673043 and 22075050), MOST (2016YFA0203302), STCSM (20JC1414902) and SHMEC (2017-01-07-00-07-E00062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Sun or Huisheng Peng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Feng, J. et al. Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Adv. Fiber Mater. 3, 47–58 (2021). https://doi.org/10.1007/s42765-020-00061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00061-9

Keywords

Navigation