Skip to main content
Log in

Electrochemiluminescence biosensor based on molybdenum disulfide-graphene quantum dots nanocomposites and DNA walker signal amplification for DNA detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on the prominent electrochemiluminescence (ECL) performances of molybdenum disulfide-graphene quantum dots (MoS2-GQDs) nanocomposite and combined with enzyme-assisted recycling DNA walker signal amplification, an “on-off” switch ECL biosensor was proposed for sensitive assay of specific DNA sequences. Noticeably, MoS2 with two-dimensional nanosheet structure increased the loading capacity of GQDs to support abundant hairpin DNA (H). The composites of MoS2 and GQDs facilitated the charge transfer in ECL process, which significantly improved the ECL signal to achieve an “on” state. Then, the DNA walker cyclic amplification was performed by adding the target DNA and exonuclease III (Exo III). Finally, the DNA2-Fc-DNA1 was introduced into the system as ECL signal quencher, turning the ECL signal into an “off” state. The sensitive assay of ultra-low concentration specific DNA sequences was realized according to the variation of ECL signal strength before and after the existence of target DNA. The proposed ECL biosensor showed a good linear relationship ranging from 1 nM to 100 aM with a detection limit of 25.1 aM, providing a powerful strategy for biomedical research and clinical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang L, Wen Y, Yang X, Xu L, Liang W, Zhu Y, Wang L, Li Y, Li Y, Ding M, Ren S, Yang Z, Lv M, Zhang J, Ma K, Liu G (2019) Ultrasensitive electrochemical DNA biosensor based on a label-free assembling strategy using a triblock polyA DNA probe. Anal Chem 91(24):16002–16009. https://doi.org/10.1021/acs.analchem.9b04757

    Article  CAS  PubMed  Google Scholar 

  2. Ding W, Song C, Li T, Ma H, Yao Y, Yao C (2019) TiO2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 199:442–448. https://doi.org/10.1016/j.talanta.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Han Y, An F, Liu J, Kong J, Zhang X (2020) Highly sensitive determination of DNA via a new type of electrochemical zirconium signaling probe. New J Chem 44(47):20770–20775. https://doi.org/10.1039/d0nj04405a

    Article  CAS  Google Scholar 

  4. Dutta S, Dutta Chowdhury A, Biswas S, Park EY, Agnihotri N, De A, De S (2018) Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2- polyaniline nanocomposites. Biochem Eng J 140:130–139. https://doi.org/10.1016/j.bej.2018.09.016

    Article  CAS  Google Scholar 

  5. Chen J, Qiu H, Zhang M, Gu T, Shao S, Huang Y, Zhao S (2015) Hairpin assembly-triggered cyclic activation of a DNA machine for label-free and ultrasensitive chemiluminescence detection of DNA. Biosens Bioelectron 68:550–555. https://doi.org/10.1016/j.bios.2015.01.054

    Article  CAS  PubMed  Google Scholar 

  6. Wu H, Su Y, Jiang J, Liang Y, Zhang C (2020) Ultrasensitive electrochemiluminescence detection of p53 gene by a novel cloth-based microfluidic biosensor with luminol-gold nanoparticles and hybridization chain reaction amplification. J Luminesc 226:117485. https://doi.org/10.1016/j.jlumin.2020.117485

    Article  CAS  Google Scholar 

  7. Tang H, Chen W, Li D, Duan X, Ding S, Zhao M, Zhang J (2019) Luminol-based ternary electrochemiluminescence nanospheres as signal tags and target-triggered strand displacement reaction as signal amplification for highly sensitive detection of Helicobacter pylori DNA. Sensors Actuators B Chem 293:304–311. https://doi.org/10.1016/j.snb.2019.05.013

    Article  CAS  Google Scholar 

  8. Wu Z, Luo F, Wen W, Zhang X, Wang S (2019)Enrichment-stowage-cycle strategy for ultrasensitive electrochemiluminescent detection of HIV-DNA with wide dynamic range. Anal Chem 91(19):12238–12245. https://doi.org/10.1021/acs.analchem.9b01969

    Article  CAS  PubMed  Google Scholar 

  9. Zhou S, Gou T, Hu J, Wu W, Ding X, Fang W, Hu Z, Mu Y (2019) A highly integrated real-time digital PCR device for accurate DNA quantitative analysis. Biosens Bioelectron 128:151–158. https://doi.org/10.1016/j.bios.2018.12.055

    Article  CAS  PubMed  Google Scholar 

  10. Tao C, Yan Y, Xiang H, Zhu D, Cheng W, Ju H, Ding S (2015) A new mode for highly sensitive and specific detection of DNA based on exonuclease III-assisted target recycling amplification and mismatched catalytic hairpin assembly. Chem Commun 51(20):4220–4222. https://doi.org/10.1039/c5cc00385g

    Article  CAS  Google Scholar 

  11. He Y, Chen D, Li M, Fang L, Yang W, Xu L, Fu F (2014) Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantification of DNA by inductively coupled plasma mass spectrometry. Biosens Bioelectron 58:209–213. https://doi.org/10.1016/j.bios.2014.02.072

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Guo J, Zhai Q, Xia J, Yi G (2016) Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification. Anal Chim Acta 934:52–58. https://doi.org/10.1016/j.aca.2016.06.034

    Article  CAS  PubMed  Google Scholar 

  13. Jia L, Shi S, Ma R, Jia W, Wang H (2016) Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection. Biosens Bioelectron 80:392–397. https://doi.org/10.1016/j.bios.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  14. An N, Li K, Zhang Y, Wen T, Liu W, Liu G, Li L, Jin W (2021) A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms. Talanta 231:122361. https://doi.org/10.1016/j.talanta.2021.122361

    Article  CAS  PubMed  Google Scholar 

  15. Pan J, Li F, Cha TG, Chen H, Choi JH (2015) Recent progress on DNA based walkers. Curr Opin Biotechnol 34:56–64. https://doi.org/10.1016/j.copbio.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  16. Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126(35):10834–10835. https://doi.org/10.1021/ja047543j

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Deng R, Li J (2015) Target-fueled DNA walker for highly selective miRNA detection. Chem Sci 6(12):6777–6782. https://doi.org/10.1039/c5sc02784e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Xiang Y, Yuan R, Chai Y (2015) A restriction enzyme-powered autonomous DNA walking machine: its application for a highly sensitive electrochemiluminescence assay of DNA. Nanoscale 7(3):981–986. https://doi.org/10.1039/c4nr05387g

    Article  CAS  PubMed  Google Scholar 

  19. Ma C, Cao Y, Gou X, Zhu JJ (2020) Recent progress in electrochemiluminescence sensing and imaging. Anal Chem 92(1):431–454. https://doi.org/10.1021/acs.analchem.9b04947

    Article  CAS  PubMed  Google Scholar 

  20. Huang B, Liu XP, Chen JS, Mao CJ, Niu HL, Jin BK (2020) Electrochemiluminescence immunoassay for the prostate-specific antigen by using a CdS/chitosan/g-C3N4 nanocomposite. Mikrochim Acta 187(3):155. https://doi.org/10.1007/s00604-020-4125-y

    Article  CAS  PubMed  Google Scholar 

  21. Li M, Wang C, Chen L, Liu D (2019) A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid. Anal Chim Acta 1090:57–63. https://doi.org/10.1016/j.aca.2019.09.018

    Article  CAS  PubMed  Google Scholar 

  22. Shekari Z, Zare HR, Falahati A (2019) Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Mikrochim Acta 186(8):530. https://doi.org/10.1007/s00604-019-3572-9

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X-L, Li X, Li X-T, Gao Y, Feng F, Yang G-J (2019) Electrochemiluminescence sensor for pentoxifylline detection using Au nanoclusters@graphene quantum dots as an amplified electrochemiluminescence luminophore. Sensors Actuators B Chem 282:927–935. https://doi.org/10.1016/j.snb.2018.11.113

    Article  CAS  Google Scholar 

  24. Wang H, Yuan H, Sae Hong S, Li Y, Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44(9):2664–2680. https://doi.org/10.1039/c4cs00287c

    Article  CAS  PubMed  Google Scholar 

  25. Song Y, Qiao J, Li W, Ma C, Chen S, Li H, Hong C (2020) Bimetallic PtCu nanoparticles supported on molybdenum disulfide-functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochim Acta 187(9):538. https://doi.org/10.1007/s00604-020-04498-y

    Article  CAS  PubMed  Google Scholar 

  26. Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182(9–10):1803–1809. https://doi.org/10.1007/s00604-015-1517-5

    Article  CAS  Google Scholar 

  27. Ma X, Du C, Zhang J, Shang M, Song W (2019) A system composed of vanadium(IV) disulfide quantum dots and molybdenum(IV) disulfide nanosheets for use in an aptamer-based fluorometric tetracycline assay. Mikrochim Acta 186(12):837. https://doi.org/10.1007/s00604-019-3983-7

    Article  CAS  PubMed  Google Scholar 

  28. Govindasamy M, Chen S-M, Mani V, Akilarasan M, Kogularasu S, Subramani B (2016) Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim Acta 184(3):725–733. https://doi.org/10.1007/s00604-016-2062-6

    Article  CAS  Google Scholar 

  29. Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour JM, Fang Z (2015) Graphene quantum dots doping of MoS2 monolayers. Adv Mater 27(35):5235–5240. https://doi.org/10.1002/adma.201501888

    Article  CAS  PubMed  Google Scholar 

  30. Vasilescu I, Eremia SA, Kusko M, Radoi A, Vasile E, Radu GL (2016) Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 75:232–237. https://doi.org/10.1016/j.bios.2015.08.051

    Article  CAS  PubMed  Google Scholar 

  31. Chen C, Qiao H, Lin S, Man Luk C, Liu Y, Xu Z, Song J, Xue Y, Li D, Yuan J, Yu W, Pan C, Ping Lau S, Bao Q (2015) Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci Rep 5:11830. https://doi.org/10.1038/srep11830

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Fang G, Wang X, Zhang F, Liu J, Zheng W, Wang S (2017) Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay. Electrochim Acta 228:107–113. https://doi.org/10.1016/j.electacta.2017.01.043

    Article  CAS  Google Scholar 

  33. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813. https://doi.org/10.1002/adma.201302685

    Article  CAS  PubMed  Google Scholar 

  34. Xie S, Dong Y, Yuan Y, Chai Y, Yuan R (2016) Ultrasensitive lipopolysaccharides detection based on doxorubicin conjugated N-(Aminobutyl)-N-(ethylisoluminol) as electrochemiluminescence indicator and self-assembled tetrahedron DNA dendrimers as nanocarriers. Anal Chem 88(10):5218–5224. https://doi.org/10.1021/acs.analchem.6b00276

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21775055, 22074053, 21874055); Excellent Youth Innovation Team in Universities of Shandong (2019KJC016); The Project of “20 items of University” of Jinan (2020GXRC047, 2018GXRC001); the Taishan Scholars program and Case-by-Case Project for Top Outstanding Talents of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peini Zhao or Shenguang Ge.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Huang, C., Sun, X. et al. Electrochemiluminescence biosensor based on molybdenum disulfide-graphene quantum dots nanocomposites and DNA walker signal amplification for DNA detection. Microchim Acta 188, 353 (2021). https://doi.org/10.1007/s00604-021-04962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04962-3

Keywords

Navigation