Skip to main content
Log in

Facile separation of enantiomers via covalent organic framework bonded stationary phase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs), a type of crystalline polymers, have attracted increasing interest because of their controllability of geometry and functionality. Featuring infinitely extended networks and tremendous interaction sites, COFs emerge as a potential platform for separation science. Here, a novel chiral COF (β-CD COFBPDA) constructed by the imine condensation of 4,4′-biphenyldicarboxaldehyde and heptakis(6-amino-6-deoxy)-β-cyclodextrin was introduced into an electrochromatographic system via a photopolymerization method and applied to the separation of enantiomers. The structure and properties of as-synthesized β-CD COFBPDA were investigated by powder X-ray diffraction (PXRD) patterns, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and N2adsorption-desorption isotherms. It was proved that β-CD COFBPDA was provided with larger pore size and BET surface area. The β-CD COFBPDA coating endowed the chiral stationary phase with superior three-dimensional orientation, and realized satisfactory separation with improved selectivity and column efficiency for a dozen racemic drugs. Under the optimized conditions, homatropine, ondansetron, metoprolol, terbutaline, tulobuterol, and promethazine were all baseline separated with resolution values of 2.24, 2.03, 1.65, 1.62, 1.60, and 1.58, respectively. The results indicate the high perspective of COF modified stationary in enantioseparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abram M, Jakubiec M, Kaminski K (2019) Chirality as an important factor for the development of new antiepileptic drugs. ChemMedChem 14(20):1744–1761. https://doi.org/10.1002/cmdc.201900367

    Article  CAS  PubMed  Google Scholar 

  2. Calcaterra A, D’Acquarica I (2018) The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal 147:323–340. https://doi.org/10.1016/j.jpba.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  3. Alkadi H, Jbeily R (2018) Role of chirality in drugs: an overview.Infect Disord Drug Targets, 18 (2), 88–95. https://doi.org/10.2174/1871526517666170329123845

  4. Guo J, Wang Q, Xu D, Crommen J, Jiang Z (2020) Recent advances in preparation and applications of monolithic chiral stationary phases. TrAC, Trends Anal. Chem 123. https://doi.org/10.1016/j.trac.2019.115774

  5. Wang SY, Li L, Xiao Y, Wang Y (2019) Recent advances in cyclodextrins-based chiral-recognizing platforms. TrAC, Trends Anal. Chem 121:115691. https://doi.org/10.1016/j.trac.2019.115691

    Article  CAS  Google Scholar 

  6. Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY (2019) Enantiomeric recognition and separation by chiral nanoparticles. Molecules 24(6). https://doi.org/10.3390/molecules24061007

  7. Peluso P, Chankvetadze B (2021) The molecular bases of chiral recognition in 2-(benzylsulfinyl) benzamide enantioseparation. Anal. Chim. Acta 1141:194–205. https://doi.org/10.1016/j.aca.2020.10.050

    Article  CAS  PubMed  Google Scholar 

  8. Xie S-M, Fu N, Li L, Yuan B-Y, Zhang J-H, Li Y-X, Yuan L-M(2018) Homochiral metal-organic cage for gas chromatographic separations. Anal. Chem 90(15):9182–9188. https://doi.org/10.1021/acs.analchem.8b01670

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Chen Z (2017)Metal-organic frameworks as stationary phase for application in chromatographic separation. J. Chromatogr. A 1530:1–18. https://doi.org/10.1016/j.chroma.2017.10.065

    Article  CAS  PubMed  Google Scholar 

  10. Zhang JH, Xie SM, Zi M, Yuan LM (2020) Recent advances of application of porous molecular cages for enantioselective recognition and separation. J. Sep. Sci 43(1):134–149. https://doi.org/10.1002/jssc.201900762

    Article  CAS  PubMed  Google Scholar 

  11. Corella Ochoa MN, Tapia JB, Rubin HN, Lillo V, Gonzalez Cobos J, Nunez Rico JL, Balestra SRG (2019) Homochiral metal-organic frameworks for enantioselective separations in liquid chromatography. J. Am. Chem. Soc. 141(36):14306–14316. https://doi.org/10.1021/jacs.9b06500

    Article  CAS  PubMed  Google Scholar 

  12. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem. Soc. Rev 41(18):6010–6022. https://doi.org/10.1039/c2cs35157a

    Article  CAS  PubMed  Google Scholar 

  13. Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev 42(2):548–568. https://doi.org/10.1039/c2cs35072f

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Zhuang S (2019) Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev 400. https://doi.org/10.1016/j.ccr.2019.213046

  15. Wang Z, Zhang S, Chen Y, Zhang Z, Ma S (2020) Covalent organic frameworks for separation applications. Chem. Soc. Rev 49(3):708–735. https://doi.org/10.1039/c9cs00827f

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S (2019) Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev 48(20):5266–5302. https://doi.org/10.1039/c9cs00299e

    Article  CAS  PubMed  Google Scholar 

  17. Bisbey RP, Dichtel WR (2017) Covalent organic frameworks as a platform for multidimensional polymerization. ACS Central Sci 3(6):533–543. https://doi.org/10.1021/acscentsci.7b00127

    Article  CAS  Google Scholar 

  18. Pang Y-H, Huang Y-Y, Shen X-F, Wang Y-Y(2021)Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless steel fiber for efficient adsorption of bisphenol A. Anal. Chim. Acta 1142:99–107. https://doi.org/10.1016/j.aca.2020.10.061

    Article  CAS  PubMed  Google Scholar 

  19. Liu G, Sheng J, Zhao Y (2017) Chiral covalent organic frameworks for asymmetric catalysis and chiral separation. Sci China Chem 60(8):1015–1022. https://doi.org/10.1007/s11426-017-9070-1

    Article  CAS  Google Scholar 

  20. Dong Y-B, Ma H-C, Zou J, Li X-T, Chen G-J(2020) Homochiral covalent organic frameworks for asymmetric catalysis. Chemistry (Weinheim an der Bergstrasse, Germany). https://doi.org/10.1002/chem.202001006

  21. Zhuo S, Zhang X, Luo H, Wang X, Ji Y (2020) The application of covalent organic frameworks for chiral chemistry. Macromol. Rapid Commun 41(20). https://doi.org/10.1002/marc.202000404

  22. Waller PJ, Gandara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc. Chem. Res 48(12):3053–3063. https://doi.org/10.1021/acs.accounts.5b00369

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Geng K, Liu R, Tan KT, Gong Y (2020) Covalent organic frameworks: chemical approaches to designer structures and built-in functions. angew chem int ed eng 59(13):5050–5091. https://doi.org/10.1002/anie.201904291

    Article  CAS  Google Scholar 

  24. Wang R-Q, Wei X-B, Feng Y-Q(2018)beta-Cyclodextrin covalent organic framework for selective molecular adsorption. Chem. Eur. J 24(43):10979–10983. https://doi.org/10.1002/chem.201802564

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Zhuo S, Hou J, Li W, Ji Y (2019) Construction of beta-cyclodextrin covalent organic framework-modified chiral stationary phase for chiral separation. ACS Appl. Mater. Interfaces 11(51):48363–48369. https://doi.org/10.1021/acsami.9b16720

    Article  CAS  PubMed  Google Scholar 

  26. Paik M-J, Kim K-R, Lee W (2015) Chiral profiling analysis of β-blockers by capillary electrophoresis using dual chiral selectors. Bull. Korean Chem. Soc 36(5):1340–1344. https://doi.org/10.1002/bkcs.10255

    Article  CAS  Google Scholar 

  27. Pirkle WH, Lee W-J(2010) Separation of the enantiomers of β-blockers using brush type chiral stationary phase derived from conformationally rigid α-amino β-lactam. Bull. Korean Chem. Soc 31(3):620–623. https://doi.org/10.5012/bkcs.2010.31.03.620

    Article  CAS  Google Scholar 

  28. Li M, Zhang J, Ma S, Jiang Z, Di X, Guo X (2020) Chiral separation of five antihistamine drug enantiomers and enantioselective pharmacokinetic study of carbinoxamine in rat plasma by HPLC-MS/MS. New J. Chem 44(15):5819–5827. https://doi.org/10.1039/d0nj00095g

    Article  CAS  Google Scholar 

  29. Zhu B, Xue M, Liu B, Li Q, Guo X (2019) Enantioselective separation of eight antihistamines with alpha1-acid glycoprotein-based chiral stationary phase by HPLC: development and validation for the enantiomeric quality control. J. Pharm. Biomed. Anal 176:112803. https://doi.org/10.1016/j.jpba.2019.112803

    Article  CAS  PubMed  Google Scholar 

  30. Meng Li BZ, Yu J, Wang J, Guo X (2018) Enantiomeric separation and simulation study of eight anticholinergic drugs on an immobilized polysaccharide-based chiral stationary phase by HPLC. New J. Chem 42:11724–11731. https://doi.org/10.1039/c8nj00685g

    Article  CAS  Google Scholar 

  31. Lidia Mateus SC, Christen P, Veuthey J-L(2000) Enantioseparation of atropine by capillary electrophoresis using sulfated cyclodextrin application to a plant extract. J. Chromatogr. A 868:285–294

  32. Saz JM, Marina ML (2016) Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J. Chromatogr. A 1467:79–94. https://doi.org/10.1016/j.chroma.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  33. Scriba GKE (2016) Chiral recognition in separation science - an update. J. Chromatogr. A 1467:56–78. https://doi.org/10.1016/j.chroma.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Zhu L, He C, Xu X, Duan Z, Liu S, Song M, Song S, Shi J, Li Y, Cao G (2019) Adsorption performance and mechanisms of Pb(II), Cd(II), and Mn(II) removal by a beta-cyclodextrin derivative. Environ. Sci. Pollut. Res. Int 26(5):5094–5110. https://doi.org/10.1007/s11356-018-3989-4

    Article  CAS  PubMed  Google Scholar 

  35. Xu M, Zhang Y, Zhang Z, Shen Y, Zhao M, Pan G (2011) Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem. Eng. J 168(2):737–745. https://doi.org/10.1016/j.cej.2011.01.069

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful for financial supports from the National Natural Science Foundation of China (21804141), Natural Science Foundation of Jiangsu Province (BE2019717), and “Double First-Class University” project (CPU2018GY07, CPU2018GY21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, X., Sun, Q. et al. Facile separation of enantiomers via covalent organic framework bonded stationary phase. Microchim Acta 188, 367 (2021). https://doi.org/10.1007/s00604-021-04925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04925-8

Keywords

Navigation