Skip to main content
Log in

Integrated nicking enzyme-powered numerous-legged DNA walker prepared by rolling circle amplification for fluorescence detection of microRNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have been accepted as promising non-invasive biomarkers for cancer early diagnosis. Developing amplified sensing strategies for detecting ultralow concentration of miRNAs in clinical samples still requires much effort. Herein, an integrated fluorescence biosensor using nicking enzyme-powered numerous-feet DNA walking machine was developed for ultrasensitive detection of miRNA. A long numerous-feet walker produced by target-triggered rolling circle amplification autonomously moves along the defined DNA tracks on gold nanorods (AuNRs) with the help of nicking enzyme, leading to the recovery of fluorescence. This results in an amplified fluorescence signal, typically measured at 518 nm emission wavelength. Benefiting from the long walker that dramatically improves movement range, the homogenous and one-step strategy realizes ultrahigh sensitivity with a limit of detection of 0.8 fM. Furthermore, this walking machine has been successfully used to quantification of miRNA in clinical serum samples. The consistency of the gained results between of the developed strategy and reverse transcription quantitative polymerase chain reaction (RT-qPCR) shows that the sensing method has great promise for tumor diagnostics based on nucleic acid.

Graphical abstract

Schematic representation of the fluorescent biosensing strategy, numerous-legged DNA walker prepared by rolling circle amplification on gold nanorods (AuNRs) for microRNA analysis, which can be applied in real samples with good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hu P, Zhang S, Wu T, Ni D, Fan W, Zhu Y, Qian R, Shi J (2018) Fe-Au nanoparticle-coupling for ultrasensitive detections of circulating tumor DNA. Adv Mater 30(31):e1801690

    Article  PubMed  Google Scholar 

  2. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112

    Article  CAS  PubMed  Google Scholar 

  3. Jin CE, Koo B, Lee TY, Han K, Lim SB, Park IJ, Shin Y (2018) Simple and low-cost sampling of cell-free nucleic acids from blood plasma for rapid and sensitive detection of circulating tumor DNA. Adv Sci 5(10):1800614

    Article  Google Scholar 

  4. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579

    Article  PubMed  Google Scholar 

  5. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233

    Article  CAS  PubMed  Google Scholar 

  6. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  7. Rasnic R, Linial N, Linial M (2017) Enhancing identification of cancer types via lowly-expressed microRNAs. Nucleic Acids Res 45(9):5048–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Du J, Yang S, An D, Hu F, Yuan W, Zhai C, Zhu T (2009) BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1. Cell Res 19(4):487–496

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Cheng W, Li D, Wu J, Ding X, Cheng Q, Ding S (2016) A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly. Biosens Bioelectron 80:98–104

    Article  CAS  PubMed  Google Scholar 

  10. Kuang Y, Cao J, Xu F, Chen Y (2019) Duplex-specific nuclease-mediated amplification strategy for mass spectrometry quantification of MiRNA-200c in breast cancer stem cells. Anal Chem 91(14):8820–8826

    Article  CAS  PubMed  Google Scholar 

  11. Ouyang T, Liu Z, Han Z, Ge Q (2019) MicroRNA detection specificity: recent advances and future perspective. Anal Chem 91(5):3179–3186

    Article  CAS  PubMed  Google Scholar 

  12. Ye J, Xu M, Tian X, Cai S, Zeng S (2019) Research advances in the detection of miRNA. J Pharm Anal 9(4):217–226

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang C, Miao P, Sun M, Yan M, Liu H (2019) Progress in miRNA detection using graphene material-based biosensors. Small 15(38):e1901867

    Article  PubMed  Google Scholar 

  14. Wang YH, He LL, Huang KJ, Chen YX, Wang SY, Liu ZH, Li D (2019) Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 144(9):2849–2866

    Article  CAS  PubMed  Google Scholar 

  15. Masud MK, Umer M, Hossain MSA, Yamauchi Y, Nguyen NT, Shiddiky MJA (2019) Nanoarchitecture frameworks for electrochemical miRNA detection. Trends Biochem Sci 44(5):433–452

    Article  CAS  PubMed  Google Scholar 

  16. Deng R, Zhang K, Li J (2017) Isothermal amplification for MicroRNA detection: from the test tube to the cell. Acc Chem Res 50(4):1059–1068

    Article  CAS  PubMed  Google Scholar 

  17. Lei S, Liu Z, Xu L, Zou L, Li G, Ye B (2020) A “signal-on” electrochemical biosensor based on DNAzyme-driven bipedal DNA walkers and TdT-mediated cascade signal amplification strategy. Anal Chim Acta 1100:40–46

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ (2019) Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 48(18):4892–4920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li D, Cheng W, Li Y, Xu Y, Li X, Yin Y, Ju H, Ding S (2016) Catalytic hairpin assembly actuated DNA nanotweezer for logic gate building and sensitive enzyme-free biosensing of MicroRNAs. Anal Chem 88(15):7500–7506

    Article  CAS  PubMed  Google Scholar 

  20. Huo M, Li S, Zhang P, Feng Y, Liu Y, Wu N, Ju H, Ding L (2019) Nanoamplicon comparator for live-cell microRNA imaging. Anal Chem 91(5):3374–3381

    Article  CAS  PubMed  Google Scholar 

  21. Bai M, Chen F, Cao X, Zhao Y, Xue J, Yu X, Fan C, Zhao Y (2020) Intracellular entropy-driven multi-bit DNA computing for tumor progression discrimination. Angew Chem Int Ed 59(32):13267–13272

    Article  CAS  Google Scholar 

  22. Xue J, Chen F, Bai M, Cao X, Huang P, Zhao Y (2019) All-in-one synchronized DNA nanodevices facilitating multiplexed cell imaging. Anal Chem 91(7):4696–4701

    Article  CAS  PubMed  Google Scholar 

  23. Xiao M, Zou K, Li L, Wang L, Tian Y, Fan C, Pei H (2019) Stochastic DNA walkers in droplets for super-multiplexed bacterial phenotype detection. Angew Chem Int Ed 58(43):15448–15454

    Article  CAS  Google Scholar 

  24. Xu M, Zhuang J, Jiang X, Liu X, Tang D (2019) A three-dimensional DNA walker amplified FRET sensor for detection of telomerase activity based on the MnO2 nanosheet-upconversion nanoparticle sensing platform. Chem Commun 55(66):9857–9860

    Article  CAS  Google Scholar 

  25. Zheng J, Ji X, Du M, Tian S, He Z (2018) Rational construction of a DNA nanomachine for HIV nucleic acids ultrasensitive sensing. Nanoscale 10(36):17206–17211

    Article  CAS  PubMed  Google Scholar 

  26. Jung C, Allen PB, Ellington AD (2017) A simple, cleated DNA walker that hangs on to surfaces. ACS Nano 11(8):8047–8054

    Article  CAS  PubMed  Google Scholar 

  27. Škugor M, Valero J, Murayama K, Centola M, Asanuma H, Famulok M (2019) Orthogonally photocontrolled non-autonomous DNA walker. Angew Chem Int Ed 58(21):6948–6951

    Article  Google Scholar 

  28. Qu X, Zhu D, Yao G, Su S, Chao J, Liu H, Zuo X, Wang L, Shi J, Wang L, Huang W, Pei H, Fan C (2017) An exonuclease III-powered, on-particle stochastic DNA walker. Angew Chem Int Ed 56(7):1855–1858

    Article  CAS  Google Scholar 

  29. Peng H, Li XF, Zhang H, Le XC (2017) A microRNA-initiated DNAzyme motor operating in living cells. Nat Commun 8:14378

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu Z, Chang Y, Chai Y, Wang H, Yuan R (2019) Ultrasensitive electrochemiluminescence biosensor for speedy detection of microRNA based on a DNA rolling machine and target recycling. Anal Chem 91(7):4883–4888

    Article  CAS  PubMed  Google Scholar 

  31. Li D, Xu Y, Fan L, Shen B, Ding X, Yuan R, Li X, Chen W (2020) Target-driven rolling walker based electrochemical biosensor for ultrasensitive detection of circulating tumor DNA using doxorubicin@tetrahedron-Au tags. Biosens Bioelectron 148:111826

    Article  CAS  PubMed  Google Scholar 

  32. Wu N, Wang K, Wang YT, Chen ML, Chen XW, Yang T, Wang JH (2020) Three-dimensional DNA nanomachine biosensor by integrating DNA walker and rolling machine cascade amplification for ultrasensitive detection of cancer-related gene. Anal Chem 92(16):11111–11118

    Article  CAS  PubMed  Google Scholar 

  33. Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Nie C, Chen T, Chu X (2020) Photocontrolled and self-powered bipedal DNA walking machine for intracellular microRNA imaging. Chem Commun 56(24):3496–3499

    Article  CAS  Google Scholar 

  34. Wang L, Liu P, Liu Z, Zhao K, Ye S, Liang G, Zhu JJ (2020) Simple tripedal DNA walker prepared by target-triggered catalytic hairpin assembly for ultrasensitive electrochemiluminescence detection of microRNA. ACS Sens 5(11):3584–3590

    Article  CAS  PubMed  Google Scholar 

  35. Yao D, Bhadra S, Xiong E, Liang H, Ellington AD, Jung C (2020) Dynamic programming of a DNA walker controlled by protons. ACS Nano 14(4):4007–4013

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Deng R, Li J (2015) Target-fueled DNA walker for highly selective miRNA detection. Chem Sci 6(12):6777–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q (2013) Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J Am Chem Soc 135(31):11441–11444

    Article  CAS  PubMed  Google Scholar 

  38. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994

    Article  CAS  PubMed  Google Scholar 

  39. Liu B, Song C, Zhu D, Wang X, Zhao M, Yang Y, Zhang Y, Su S, Shi J, Chao J, Liu H, Zhao Y, Fan C, Wang L (2017) DNA-origami-based assembly of anisotropic plasmonic gold nanostructures. Small 13(23):1603991

    Article  Google Scholar 

  40. Shen C, Lan X, Lu X, Meyer TA, Ni W, Ke Y, Wang Q (2016) Site-specific surface functionalization of gold nanorods using DNA origami clamps. J Am Chem Soc 138(6):1764–1767

    Article  CAS  PubMed  Google Scholar 

  41. Huang J, Zhu L, Ju H, Lei J (2019) Telomerase triggered DNA Walker with a superhairpin structure for human telomerase activity sensing. Anal Chem 91(11):6981–6985

    Article  CAS  PubMed  Google Scholar 

  42. Yang T, Fang J, Guo Y, Sheng S, Pu Q, Zhang L, Ou X, Dai L, Xie G (2019) Fluorometric determination of microRNA by using an entropy-driven three-dimensional DNA walking machine based on a catalytic hairpin assembly reaction on polystyrene microspheres. Mikrochim Acta 186(8):574

    Article  PubMed  Google Scholar 

  43. Li Q, Liang X, Mu X, Tan L, Lu J, Hu K, Zhao S, Tian J (2020) Ratiometric fluorescent 3D DNA walker and catalyzed hairpin assembly for determination of microRNA. Mikrochim Acta 187(6):365

    Article  CAS  PubMed  Google Scholar 

  44. Li D, Luo Z, An H, Yang E, Wu M, Huang Z, Duan Y (2020) Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection. Talanta 217:121056

    Article  CAS  PubMed  Google Scholar 

  45. Yang L, Fang J, Li J, Ou X, Zhang L, Wang Y, Weng Z, Xie G (2021) An integrated fluorescence biosensor for microRNA detection based on exponential amplification reaction-triggered three-dimensional bipedal DNA walkers. Anal Chim Acta 1143:157–165

    Article  CAS  PubMed  Google Scholar 

  46. Hu M, Mao D, Liu X, Ren L, Zhou M, Chen X, Zhu X (2019) An all-in-one homogeneous DNA walking nanomachine and its application for intracellular analysis of miRNA. Theranostics 9(20):5914–5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation Project of Chongqing (cstc2020jcyj-msxmX0611) and the Talent Fund of the Fengjie People’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Ou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zeng, H., Yang, X. et al. Integrated nicking enzyme-powered numerous-legged DNA walker prepared by rolling circle amplification for fluorescence detection of microRNA. Microchim Acta 188, 214 (2021). https://doi.org/10.1007/s00604-021-04875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04875-1

Keywords

Navigation