Skip to main content
Log in

Fluorescence enhancement of CdSe/ZnS quantum dots induced by mercury ions and its applications to the on-site sensitive detection of mercury ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The significant fluorescence enhancement of CdSe/ZnS quantum dots (QDs) induced by Hg2+ was observed for the first time based on a CdSe/ZnS QD-modified fiber nanoprobe. The fluorescence enhancement mechanism contributed to the Zn-to-Hg cation exchange in the ZnS shell, which allowed to form a HgxZn1-xS/CdSe heterojunction and increase the separation of electrons and holes and reduce the recombination rate. High concentrations of Hg2+ accelerated the generation of the fluorescence signal and lead to higher fluorescence intensity. The maximum fluorescence intensity increased more than eight times when Hg2+ concentration was 1 µM. The characteristic time (θc), i.e., the rising time to achieve the maximum fluorescence intensity, was linearly dependent on  initial concentration of Hg2+ solution in accordance with our proposed theory. When the evanescent wave optofluidic fluorescence platform was used, the linear detection range and detection limit of Hg2+ were 5.0–1000 nM and 0.80 nM, respectively. The fiber nanoprobe can be applied to the rapid, sensitive, and accurate on-site detection of Hg2+ in real water samples without significant matrix effect. Our work paves a novel way to develop a simple and reliable nanoprobe for mercuric pollution control, and achieve the high quantum efficiency of QDs by limiting the diffusion of Hg2+ in the ZnS shell.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Michler P, Imamoglu A, Mason MD, Carson PJ, Buratto SK (2000) Quantum correlations among photons from a single quantum dot. Nature 406:968–970

    Article  CAS  Google Scholar 

  2. Kahmann S, Shulga A, Loi MA (2020) Quantum dot light-emitting transistors—powerful research tools and their future applications. Adv Funct Mater 30:1904174

    Article  CAS  Google Scholar 

  3. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U (2011) Heavily doped semiconductor nanocrystal quantum dots. Science 332:77–81

    Article  CAS  Google Scholar 

  4. Smith AM, Nie S (2011) Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J Am Chem Soc 133:24–26

    Article  CAS  Google Scholar 

  5. Galle T, Kazes M, Hübner R, Lox J, Eychüller A (2019) Colloidal mercury-doped CdSe nanoplatelets with dual fluorescence. Chem Mater 31:5065–5074

    Article  CAS  Google Scholar 

  6. Kroupa DM, Hughes BK, Miller EM, Moore DT, Anderson NC, Chernomordik BD, Nozik AJ, Beard MC (2017) Synthesis and spectroscopy of silver-doped PbSe quantum dots. J Am Chem Soc 139:10382–10394

    Article  CAS  Google Scholar 

  7. Engel JH, Surendranath Y, Alivisatos AP (2012) Controlled chemical doping of semiconductor nanocrystals using redox buffers. J Am Chem Soc 134:13200–13203

    Article  CAS  Google Scholar 

  8. Zhang Q, Leonardi F, Casalini S, Mas-Torrent M (2017) Mercury-mediated organic semiconductor surface doping monitored by electrolyte-gated field-effect transistors. Adv Funct Mater 27:10389

    Google Scholar 

  9. Morgan D, Kelley DF (2018) Role of surface states in silver-doped CdSe and CdSe/CdS quantum dots. J Phys Chem C 122:10627–10636

    Article  CAS  Google Scholar 

  10. Izquierdo E, Dufour M, Chu A, Livache C, Martinez B, Amelot D, Patriarche G, Lequeux N, Lhuillier E, Ithurria S (2018) Coupled HgSe colloidal quantum wells through a tunable barrier: a strategy to uncouple optical and transport band gap. Chem Mater A Publ Am Chem Soc 30:4065–4072

    CAS  Google Scholar 

  11. Zhong X, Han M, Dong Z, White TJ, Knoll W (2003) Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J Am Chem Soc 125:8589–8594

    Article  CAS  Google Scholar 

  12. Long F, Zhu A, Wang H (2014) Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Anal Chim Acta 849:43–49

    Article  CAS  Google Scholar 

  13. Nath N (1998) Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition. Opt Eng 37:220–228

    Article  Google Scholar 

  14. Luan W, Yang H, Fan N, Tu ST (2008) Synthesis of efficiently green luminescent CdSe/ZnS nanocrystals via microfluidic reaction. Nanoscale Res Lett 3:134–139

    Article  Google Scholar 

  15. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  16. Zeng T, Hu Y, Wang N, Xia C, Li S, Zu Y, Liu L, Yao Z, Zhao Y, Wu H (2013) Effects of different metal ions on the fluorescence of CdSe/ZnS quantum dots capped with various thiolate ligands. Phys Chem Chem Phys 15:18710–18715

    Article  CAS  Google Scholar 

  17. Son DH, Hughes SM, Yin YD, Alivisatos AP (2004) Cation exchange reactions in ionic nanocrystals. Science 306:1009–1012

    Article  CAS  Google Scholar 

  18. Trizio LD, Manna L (2016) Forging colloidal nanostructures via cation exchange reactions. Chem Rev 116:10852–10887

    Article  Google Scholar 

  19. Qu Z, Yan L, Li L, Xu J, Liu M, Li Z, Yan N (2014) Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange. ACS Appl Mater Interfaces 6:18026–18032

    Article  CAS  Google Scholar 

  20. Patil RS, Gujar TP, Lokhande CD, Mane RS, Han SH (2007) Photoelectrochemical studies of chemically deposited nanocrystalline p-type HgS thin films. Sol Energy 81:648–652

    Article  CAS  Google Scholar 

  21. Kershaw SV, Abdelazim NM, Zhao Y, Susha AS, Rogach AL (2017) Investigation of the exchange kinetics and surface recovery of CdxHg1-xTe quantum dots during cation exchange using a microfluidic flow reactor. Chem Mater 29:2576–2768

    Article  Google Scholar 

  22. Gudjonsdottir S, Van Der Stam W, Kirkwood N, Evers WH, Houtepen AJ (2018) The role of dopant ions on charge injection and transport in electrochemically doped quantum dot films. J Am Chem Soc 140:6582–6590

    Article  CAS  Google Scholar 

  23. Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115:12732–12763

    Article  CAS  Google Scholar 

  24. Tian LJ, Min Y, Wang XM, Chen JJ, Yu HQ (2019) Biogenic quantum dots for sensitive, label-free detection of mercury ions. ACS Appl Bio Mater 2:2661–2667

    Article  Google Scholar 

  25. Xie WY, Huang WT, Luo HQ, Li NB (2012) CTAB-capped Mn-doped ZnS quantum dots and label-free aptamer for room-temperature phosphorescence detection of mercury ions. Analyst 137:4651–4653

    Article  CAS  Google Scholar 

  26. Jin LH, Han CS (2014) Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal Chem 86:7209–7213

    Article  CAS  Google Scholar 

  27. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    Article  CAS  Google Scholar 

  28. Li S, Cao W, Kumar A, Jin S, Zhao Y, Zhang C, Zou G, Wang P, Li F, Liang X (2014) Highly sensitive simultaneous detection of mercury and copper ions by ultrasmall fluorescent DNA-Ag nanoclusters. New J Chem 38:1546–1550

    Article  CAS  Google Scholar 

  29. Sekowski JW, Malkas LH, Wei Y, Hickey RJ (1997) Mercuric ion inhibits the activity and fidelity of the human cell DNA synthesome. Toxicol Appl Pharmacol 145:268–276

    Article  CAS  Google Scholar 

  30. Zhang Y, Xiao JY, Zhu Y, Tian LJ, Yu HQ (2020) A fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal Chem 92:3990–3997

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21675171), and the National Key Scientific Instrument and Equipment Development Projects of China (2012YQ3011105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Long.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Song, D., Zhou, Y. et al. Fluorescence enhancement of CdSe/ZnS quantum dots induced by mercury ions and its applications to the on-site sensitive detection of mercury ions. Microchim Acta 188, 215 (2021). https://doi.org/10.1007/s00604-021-04871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04871-5

Keywords

Navigation