Skip to main content
Log in

Fluorescent hollow ZrO2@CdTe nanoparticles-based lateral flow assay for simultaneous detection of C-reactive protein and troponin T

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Highly fluorescent hollow ZrO2@CdTe nanoparticles (NPs) were synthesized efficiently via the hydrothermal method. By changing the hydrothermal time of ZrO2@CdTe NP, the peaks of fluorescence spectra measured at fluorescent excitation of 330 nm were at 540 nm, 590 nm, and 640 nm, respectively. Hollow ZrO2 NPs have a uniform core–shell structure with the size of 178 ± 10 nm and shell of 19 ± 4 nm. The as-prepared yellow-ZrO2@CdTe NPs were used to develop lateral flow assay (LFA) for the sensitive and qualitative detection of C-reactive protein (CRP). The visual limit of detection of the LFA for the CRP antigen was 1 μg/L within 20 min, which is 1000-fold lower than that of colloidal gold-based LFA. In addition, a multiplex lateral flow assay (mLFA) was developed using the as-prepared green and red-ZrO2@CdTe NPs for the simultaneous, specific, sensitive, and qualitative detection of CRP and troponin T (cTnT). The visual limits of detection of CRP and cTnT in mLFA were 10 μg/L and 0.1 mg/L, respectively. The excellent performance of ZrO2@CdTe NPs should facilitate their application in point-of-care technology for the detection of other biomarkers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ji T, Xu X, Wang X, Zhou Q, Ding W, Chen B, Guo X, Hao Y, Chen G (2019) Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples. Sens Actuators B Chem 282(1):309–316. https://doi.org/10.1016/j.snb.2018.11.074

    Article  CAS  Google Scholar 

  2. Zhang D, Huang L, Liu B, Su E, Chen HY, Gu Z, Zhao X (2018) Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral flow assay. Sens Actuators B Chem 277(1):502–509. https://doi.org/10.1016/j.snb.2018.09.044

    Article  CAS  Google Scholar 

  3. Cai Y, Kang K, Liu Y, Wang Y, He X (2018) Development of a lateral flow immunoassay of C-reactive protein detection based on red fluorescent nanoparticles. Anal Biochem 556(1):129–135. https://doi.org/10.1016/j.ab.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  4. Hu J, Zhang ZL, Wen CY, Tang M, Wu LL, Liu C, Zhu L, Pang DW (2016) Sensitive and quantitative detection of C-reaction protein based on immunofluorescent nanospheres coupled with lateral flow test strip. Anal Chem 88(12):6577–6584. https://doi.org/10.1021/acs.analchem.6b01427

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82(16):7008–7014. https://doi.org/10.1021/ac101405a

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Yu Q, Zhao G, Dou W (2020) Ultramarine blue nanoparticles as a label for immunochromatographic on-site determination of ractopamine. Microchim Acta 187(4):285. https://doi.org/10.1007/s00604-020-04270-2

    Article  CAS  Google Scholar 

  7. Huang L, Liao T, Wang J, Ao L, Su W, Hu J (2018) Brilliant pitaya-type silica colloids with central-radial and high-density quantum dots incorporation for ultrasensitive fluorescence immunoassays. Adv Funct Mater 28(4):1705380. https://doi.org/10.1002/adfm.201705380

    Article  CAS  Google Scholar 

  8. Liu J, Ji D, Meng H, Zhang L, Wang J, Huang Z, Chen J, Li J, Li Z (2018) A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip. Sens Actuators B Chem 262(1):486–492. https://doi.org/10.1016/j.snb.2018.02.040

    Article  CAS  Google Scholar 

  9. Wang Y, Hou Y, Li H, Yang M, Zhao P, Sun B (2019) A SERS-based lateral flow assay for the stroke biomarker S100-beta. Microchim Acta 186(7):548. https://doi.org/10.1007/s00604-019-3634-z

    Article  CAS  Google Scholar 

  10. Magiati M, Sevastou A, Kalogianni DP (2018) A fluorometric lateral flow assay for visual detection of nucleic acids using a digital camera readout. Microchim Acta 185(6):314. https://doi.org/10.1007/s00604-018-2856-9

    Article  CAS  Google Scholar 

  11. Fan R, Zhang W, Jin Y, Zhao R, Yang C, Chen Q, He L, Chen Y (2020) Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles. Microchim Acta 187(6):368. https://doi.org/10.1007/s00604-020-04338-z

    Article  CAS  Google Scholar 

  12. Zhang H, Luo J, Beloglazova N, Yang S, De Saeger S, Mari GM, Zhang S, Shen J, Wang Z, Yu X (2019) Portable multiplex immunochromatographic assay for quantitation of two typical algae toxins based on dual-color fluorescence microspheres. J Agric Food Chem 67(21):6041–6047. https://doi.org/10.1021/acs.jafc.9b00011

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Yang F, Wang C (2013) Quick whole-couse quantitative immunochromatographic detection kit for C-reactive protein. Chinese Patent, CN202794189U [P]

  14. Zhang M, Yan L, Huang Q, Bu T, Yu S, Zhao X, Wang J, Zhang D (2018) Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay. Food Control 84(1):215–220. https://doi.org/10.1016/j.foodcont.2017.07.035

    Article  CAS  Google Scholar 

  15. Di Nardo F, Cavalera S, Baggiani C, Giovannoli C, Anfossi L (2019) Direct vs mediated coupling of antibodies to gold nanoparticles: the case of salivary cortisol detection by lateral flow immunoassay. ACS Appl Mater Interfaces 11(36):32758–32768. https://doi.org/10.1021/acsami.9b11559

    Article  CAS  PubMed  Google Scholar 

  16. Novikova AS, Ponomaryova TS, Goryacheva IY (2020) Fluorescent AgInS/ZnS quantum dots microplate and lateral flow immunoassays for folic acid determination in juice samples. Microchim Acta 187(7):427. https://doi.org/10.1007/s00604-020-04398-1

    Article  CAS  Google Scholar 

  17. Wang J, Meng HM, Chen J, Liu J, Zhang L, Qu L, Li Z, Lin Y (2019) Quantum dot-based lateral flow test strips for highly sensitive detection of the tetanus antibody. ACS Omega 4(4):6789–6795. https://doi.org/10.1021/acsomega.9b00657

    Article  CAS  Google Scholar 

  18. Zhao Y, Gao W, Ge X, Li S, Du D, Yang H (2019) CdTe@SiO2 signal reporters-based fluorescent immunosensor for quantitative detection of prostate specific antigen. Anal Chim Acta 1057(1):44–50. https://doi.org/10.1016/j.aca.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  19. Yang X, Liu X, Gu B, Liu H, Xiao R, Wang C, Wang S (2020) Quantitative and imultaneous detection of two inflammation biomarkers via a fluorescent lateral flow immunoassay using dual-color SiO2@QD nanotags. Microchim Acta 187(9):570. https://doi.org/10.1007/s00604-020-04555-6

    Article  CAS  Google Scholar 

  20. Chen J, Meng H, An Y, Liu J, Yang R, Qu L, Li Z (2020) A fluorescent nanosphere-based immunochromatography test strip for ultrasensitive and point-of-care detection of tetanus antibody in human serum. Anal Bioanal Chem 412(12):1151–1158. https://doi.org/10.1007/s00216-019-02343-7

    Article  CAS  PubMed  Google Scholar 

  21. Qu Z, Xu H, Gu H (2015) Synthesis and biomedical applications of poly((meth)acrylic acid) brushes. ACS Appl Mater Interfaces 7(27):14537–14551. https://doi.org/10.1021/acsami.5b02912

    Article  CAS  PubMed  Google Scholar 

  22. Shi Q, Huang J, Sun Y, Deng R, Teng M, Li Q, Yang Y, Hu X, Zhang Z, Zhang G (2018) A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim Acta 185(1):84. https://doi.org/10.1007/s00604-017-2556-x

    Article  CAS  Google Scholar 

  23. Bai Y, Tian C, Wei X, Wang Y, Wang D, Shi X (2012) A sensitive lateral flow test strip based on silica nanoparticle/CdTe quantum dot composite reporter probes. RSC Adv 2(5):1778. https://doi.org/10.1039/c2ra00976e

    Article  CAS  Google Scholar 

  24. Ge J, Ren X, Qiu X, Shi H, Meng X, Tang F (2015) Fast synthesis of fluorescent SiO2@CdTe nanoparticles with reusability in detection of H2O2. J Mater Chem B 3(30):6385–6390. https://doi.org/10.1039/c5tb00740b

    Article  CAS  PubMed  Google Scholar 

  25. Yu Q, Liu J, Zhao G, Dou W (2019) A silica nanoparticle based 2-color immunochromatographic assay for simultaneous determination of clenbuterol and ractopamine. Mikrochim Acta 186(7):421. https://doi.org/10.1007/s00604-019-3529-z

    Article  CAS  PubMed  Google Scholar 

  26. Tan L, Liu T, Fu C, Wang S, Fu S, Ren J, Meng X (2016) Hollow ZrO2/PPy nanoplatform for improved drug delivery and real-time CT monitoring in synergistic photothermal-chemo cancer therapy. J Mater Chem B 4(5):859–866. https://doi.org/10.1039/c5tb02205c

    Article  CAS  PubMed  Google Scholar 

  27. Oh YK, Joung HA, Han HS, Suk HJ, Kim MG (2014) A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera. Biosens Bioelectron 61(1):285–289. https://doi.org/10.1016/j.bios.2014.04.032

    Article  CAS  PubMed  Google Scholar 

  28. Zhang D, Huang L, Liu B, Ni H, Sun L, Su E, Chen H, Gu Z, Zhao X (2018) Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosens Bioelectron 106(1):204–211. https://doi.org/10.1016/j.bios.2018.01.062

    Article  CAS  PubMed  Google Scholar 

  29. Liang Z, Wang X, Zhu W, Zhang P, Yang Y, Sun C, Zhang J, Wang X, Xu Z, Zhao Y, Yang R, Zhao S, Zhou L (2017) Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Appl Mater Interfaces 9(4):3497–3504. https://doi.org/10.1021/acsami.6b14906

    Article  CAS  PubMed  Google Scholar 

  30. Hong L, Wang K, Yan W, Xu H, Chen Q, Zhang Y, Cui D, Jin Q, He J (2018) High performance immunochromatographic assay for simultaneous quantitative detection of multiplex cardiac markers based on magnetic nanobeads. Theranostics 8(22):6121–6131. https://doi.org/10.7150/thno.29070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi X, Huang Y, Lin Z, Xu L, Yu H (2016) Dual-quantum-dots-labeled lateral flow strip rapidly quantifies procalcitonin and C-reactive protein. Nanoscale Res Lett 11(1):167. https://doi.org/10.1186/s11671-016-1383-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S (2019) Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Appl Mater Interfaces 11(21):19495–19505. https://doi.org/10.1021/acsami.9b03920

    Article  CAS  PubMed  Google Scholar 

  33. Xie S, Wen K, Wang S, Wang J, Peng T, Mari GM, Li J, Wang Z, Yu X, Jiang H (2019) Quantitative and rapid detection of amantadine and chloramphenicol based on various quantum dots with the same excitations. Anal Bioanal Chem 411(10):2131–2140. https://doi.org/10.1007/s00216-019-01643-2

    Article  CAS  PubMed  Google Scholar 

  34. Duan H, Li Y, Shao Y, Huang X, Xiong Y (2019) Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensor Actuators B Chem 291(1):411–417. https://doi.org/10.1016/j.snb.2019.04.101

    Article  CAS  Google Scholar 

  35. Orla D, Kieran W, Kevin K, Sean D (2003) Quantitative detection of C-reactive protein using phosphocholine-labelled enzyme or microspheres. Anal Biochem 312(2):175–181. https://doi.org/10.1016/S0003-2697(02)00439-6

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Beijing Natural Science Foundation (4202075, 2194087, and 4161003), National Natural Science Foundation of China (61975214, 81630053, and 61571426) and Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2020L0199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwei Meng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ren, X., Chen, L. et al. Fluorescent hollow ZrO2@CdTe nanoparticles-based lateral flow assay for simultaneous detection of C-reactive protein and troponin T. Microchim Acta 188, 209 (2021). https://doi.org/10.1007/s00604-021-04865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04865-3

Keywords

Navigation