Skip to main content
Log in

Aspartic acid assisted one-step synthesis of stable CsPbX3@Asp-Cs4PbX6 by in situ growth in NH2-MIL-53 for ratiometric fluorescence detection of 4-bromophenoxybenzene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted ratiometric fluorescent sensor was synthesized for the detection of 4-bromophenoxybenzene (BDE-3) based on perovskite quantum dots and metal organic framework. First, aspartic acid (Asp) was introduced during the synthesis of perovskite CsPbX3 for the formation of a core-shell structure of CsPbX3@Asp-Cs4PbX6. Due to the protection of the shell layer Cs4PbX6, the stability of the core CsPbX3 was improved significantly. Compared to CsPb(BrI)3, the ultraviolet and thermal stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 were increased by 26 times and 32 times, respectively, and, compared to CsPbBr3, these stabilities of CsPbBr3@Asp-Cs4PbBr6 were increased by 3 times and 13 times, respectively. The water stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 and CsPbBr3@Asp-Cs4PbBr6 were greatly improved too. Then, a ratiometric fluorescence sensor was constructed by in situ growth of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 in metal organic framework (NH2-MIL-53) for the detection of BDE-3, in which the orange fluorescence of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 (614 nm) was regarded as the reference signal and the cyan fluorescence of NH2-MIL-53 (494 nm) was used as the fluorescence response signal. To improve the selectivity of the sensor, the molecular imprinting polymer (MIP) was modified on the NH2-MIL-53 and an imprinting factor of 3.17 was obtained. Under 365 nm light excitation, the fluorescent response signal at 494 nm was quenched gradually by BDE-3 in the range 11.4 to 68.5 nmol/L, while the reference signal at 614 nm remained unchanged. The limit of detection and limit of quantification were 3.35 and 11.2 nmol/L, respectively, and the fluorescent color of the sensor changed gradually from cyan to green to orange, which illustrated that the developed sensor has an ability to recognize BDE-3 specifically, a good anti-interference ability, and a sensitively visual detection ability. Moreover, the sensor was successfully applied to the BDE-3 detection in polyethylene terephthalate plastic bottle, polyvinyl chloride plastic bag, and circuit board with satisfactory recoveries (96.3–108.1%) and low relative standard deviations (5%).

Graphical abstract

The preparation processes of NH2-MIL-53, NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6, and the MIP-NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akkerman QA, D'Innocenzo V, Accornero S et al (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions[J]. J Am Chem Soc 137(32):10276–10281

  2. Boix PP, Agarwala S, Koh TM, Mathews N, Mhaisalkar SG (2015) Perovskite solar cells: beyond methylammonium lead iodide[J]. J Phys Chem Lett 6(5):898–907

    Article  CAS  PubMed  Google Scholar 

  3. Akkerman QA, Radicchi E, Park S et al (2017) Nearly monodisperse insulator Cs4PbX6 (X = cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 Nanocrystals[J]. Nano Lett 17(3):1924–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhi-Kuang T, Reza Saberi M, May Ling L et al (2014) Bright light-emitting diodes based on organometal halide perovskite[J]. Nat Nanotechnol 9(9):687–692

    Article  Google Scholar 

  5. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc 131(17):6050–6051

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS (2016) Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Adv Mater 28(21):4040–4046

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Li C (2017) Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH[J]. Nanoscale Horizons 2(4):225–232

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Sun H (2018) All-inorganic metal halide perovskite nanostructures: from photophysics to light-emitting applications[J]. Small Methods 2(1):1700252

    Article  Google Scholar 

  9. Swarnkar A, Marshall AR, Sanehira EM et al (2016) Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308):92–95

    Article  CAS  PubMed  Google Scholar 

  10. Wang KH, Wu L, Li L et al (2016) Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew Chem Int Ed 55(29):8328–8332

    Article  CAS  Google Scholar 

  11. Qian CX, Deng ZY, Yang K, Feng J, Wang MZ, Yang Z, Liu S(F), Feng HJ (2018) Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells[J]. Appl Phys Lett 112(9):093901

    Article  Google Scholar 

  12. Li Z, Long K, Huang S et al (2017) Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith[J]. Angew Chem Int Ed 56(28):8134–8138

    Article  CAS  Google Scholar 

  13. Dirin DN, Protesescu L, Trummer D, Kochetygov IV, Yakunin S, Krumeich F, Stadie NP, Kovalenko MV (2016) Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes[J]. Nano Lett 16(9):5866–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun J-Y, Rabouw FT, Yang X-F, Huang X-Y, Jing X-P, Ye S, Zhang Q-Y (2017) Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application[J]. Adv Funct Mater 27(45):1704371

    Article  Google Scholar 

  15. Michaela M, Mariano P, Amelie H-J et al (2016) Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. 8(30):19579–19586

  16. Zhou Q, Bai Z, Lu WG, Wang Y, Zou B, Zhong H (2016) In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Adv Mater 28(41):9163–9168

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, Nazeeruddin MK, Han H, Grätzel M (2015) Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nat Chem 7(9):703–711

    Article  CAS  PubMed  Google Scholar 

  18. Li G, Rivarola FWR, Davis NJLK, Bai S, Jellicoe TC, de la Peña F, Hou S, Ducati C, Gao F, Friend RH, Greenham NC, Tan ZK (2016) Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method[J]. Adv Mater 28(18):3528–3534

    Article  CAS  PubMed  Google Scholar 

  19. Palazon F, Akkerman QA, Prato M, Manna L (2016) X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water[J]. ACS Nano 10(1):1224–1230

    Article  CAS  PubMed  Google Scholar 

  20. Lin CH, Lafalce E, Jung J, Smith MJ, Malak ST, Aryal S, Yoon YJ, Zhai Y, Lin Z, Vardeny ZV, Tsukruk VV (2016) Core/alloyed-shell quantum dot robust solid films with high optical gains[J]. Acs Photonics 3(4):647–658

    Article  CAS  Google Scholar 

  21. Saidaminov MI, Almutlaq J, Sarmah S, Dursun I, Zhumekenov AA, Begum R, Pan J, Cho N, Mohammed OF, Bakr OM (2016) Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids[J]. ACS Energy Lett 1(4):840–845

    Article  CAS  Google Scholar 

  22. Park JH, Choi KM, Jeon HJ et al (2015) In-situ observation for growth of hierarchical metal-organic frameworks andtheir self-sequestering mechanism for gas storage[J]. Sci Rep 5:12045

    Article  Google Scholar 

  23. Peng Y, Gong T, Zhang K, Lin X, Liu Y, Jiang J, Cui Y (2014) Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation[J]. Nat Commun 5:4406

    Article  CAS  PubMed  Google Scholar 

  24. Peng L, Zhang J, Xue Z, Han B, Sang X, Liu C, Yang G (2014) Highly mesoporous metal-organic framework assembled in a switchable solvent[J]. Nat Commun 5:4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal−organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J]. J Am Chem Soc 138(3):962–968

    Article  CAS  PubMed  Google Scholar 

  26. An J, Shade CM, Chengelis-Czegan DA et al (2011) Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations[J]. J Am Chem Soc 133(5):1220–1223

    Article  CAS  PubMed  Google Scholar 

  27. Mehdinia A, Vaighan DJ, Jabbari A (2018) Cation exchange superparamagnetic Al-based metal organic framework (Fe3O4/MIL-96(Al)) for high efficient removal of Pb(II) from aqueous solutions[J]. ACS Sustain Chem Eng 6(3):3176–3186

    Article  CAS  Google Scholar 

  28. Yamini Y, Safari M, Morsali A, Safarifard V (2018) Magnetic frame work composite as an efficient sorbent for magnetic solid-phase extraction of plasticizer compounds[J]. J Chromatogr A 1570:38–46

    Article  CAS  PubMed  Google Scholar 

  29. Niloofar J, Homeira E, Akbar AA (2019) Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography[J]. J Chromatogr A 1608:460426

    Article  Google Scholar 

  30. Moon HR, Lim DW, Suh MP (2013) Fabrication of metal nanoparticles in metal-organic frameworks[J]. Chem Soc Rev 42(4):1807–1824

    Article  CAS  PubMed  Google Scholar 

  31. Banach EM, Stil HA, Geerlings H (2012) Aluminium hydride nanoparticles nested in the porous zeolitic imidazolate framework-8[J]. J Mater Chem 22(2):324–327

    Article  CAS  Google Scholar 

  32. Balasingham RG, Coogan MP, Thorp-Greenwood FL (2011) Complexes in context: attempting to control the cellular uptake and localisation of rhenium fac-tricarbonyl polypyridyl complexes[J]. Dalton Trans 40(44):11663–11674

    Article  CAS  PubMed  Google Scholar 

  33. Koo CK, So LY, Wong KL et al (2010) A triphenylphosphonium-functionalised cyclometalated platinum(II) complex as a nucleolus-specific two-photon molecular dye[J]. Chem Eur J 16(13):3942–3950

    Article  CAS  PubMed  Google Scholar 

  34. Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, Férey G, Stock N (2009) Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology[J]. Inorg Chem 48(7):3057–3064

    Article  CAS  PubMed  Google Scholar 

  35. Jin M, Mou ZL, Zhang RL, Liang SS, Zhang ZQ (2017) An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine[J]. Biosens Bioelectron 91:162–168

    Article  CAS  PubMed  Google Scholar 

  36. Marsh G, Hu J, Jakobsson E, Rahm S, Bergman Ȧ (1999) Synthesis and characterization of 32 polybrominated diphenyl ethers[J]. Environ Sci Technol 33(17):3033–3037

    Article  CAS  Google Scholar 

  37. Hites RA (2008) Electron impact and electron capture negative ionization mass spectra of polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers.[J]. Environ Sci Technol 42(7):2243–2252

    Article  CAS  PubMed  Google Scholar 

  38. Riva C, Binelli A, Cogni D et al (2010) Evaluation of DNA damage induced by decabromodiphenyl ether (BDE-209) in hemocytes of Dreissena polymorpha using the comet and micronucleus assays[J]. Environ Mol Mutagen 48(9):735–743

    Article  Google Scholar 

  39. European Food Safety Authority (2011) Scientific opinion on polybrominated diphenyl ethers (PBDEs) in food[J]. EFSA J 9(5):2156

    Google Scholar 

  40. Li Z, Askim JR, Suslick KS (2019) The optoelectronic nose: colorimetric and fluorometric sensor arrays[J]. Chem Rev 119(1):231–292

    Article  CAS  PubMed  Google Scholar 

  41. Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li C, Zhou Y (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals[J]. Sci Total Environ 615:476–485

    Article  CAS  PubMed  Google Scholar 

  42. Kaur N, Jindal G (2019) “Switch on” fluorescent sensor for the detection of fluoride ions in solution and commercial tooth paste[J]. Spectrochim Acta A Mol Biomol Spectrosc 223:117361

    Article  CAS  PubMed  Google Scholar 

  43. Yang YZ, Xiao N, Cen YY, Chen JR, Liu SG, Shi Y, Fan YZ, Li NB, Luo HQ (2019) Dual-emission ratiometric nanoprobe for visual detection of Cu(II) and intracellular fluorescence imaging[J]. Spectrochim Acta A Mol Biomol Spectrosc 223:117300

    Article  CAS  PubMed  Google Scholar 

  44. Guney O, Cebeci FC (2010) Molecularly imprinted fluorescent polymers as chemosensors for the detection of mercury ions in aqueous media[J]. J Appl Polym Sci 117(4):2373–2379

    Article  Google Scholar 

  45. Jaliliana N, Ebrahimzadeh H, AkbarAsgharinezhad A et al (2021) Magnetic molecularly imprinted polymer for the selective dispersive micro solid phase extraction of phenolphthalein in urine samples and herbal slimming capsules prior to HPLC-PDA analysis[J]. Microchem J 160:105712

    Article  Google Scholar 

  46. Bagheri H, Molaei K, Asgharinezhad AA, Ebrahimzadeh H, Shamsipur M (2016) Magnetic molecularly imprinted composite for the selective solid-phase extraction of p-aminosalicylic acid followed by high-performance liquid chromatography with ultraviolet detection[J]. J Sep Sci 39(21):4166–4174

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Cheng R, Wang Y, Sun L, Chen L, Dai X, Pan J, Pan G, Yan Y (2018) Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples[J]. Sensors Actuators B Chem 263:533–542

    Article  CAS  Google Scholar 

  48. Wang XY, Yu SM, Liu W et al (2018) Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin[J]. ACS Sensors 3(2):378–385

    Article  CAS  PubMed  Google Scholar 

  49. Protesescu L, Yakunin S, Maryna I. Bodnarchuk, et al. (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X=cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett 15(6):3692–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li KY, Lei NY, Gong C et al (2009) An organically modified silicate molecularly imprinted solid-phase microextraction device for the determination of polybrominated diphenyl ethers[J]. Anal Chim Acta 633(2):197–203

    Article  CAS  PubMed  Google Scholar 

  51. Mar M, Panuszko A, Namie Nik J et al (2018) Preparation and characterization of dummy-template molecularly imprinted polymers as potential sorbents for the recognition of selected polybrominated diphenyl ethers[J]. Anal Chim Acta 1030:77–95

    Article  Google Scholar 

  52. Zhang Y, Saidaminov MI, Dursun I, Yang H, Murali B, Alarousu E, Yengel E, Alshankiti BA, Bakr OM, Mohammed OF (2017) Zero-dimensional Cs4PbBr6 perovskite nanocrystals[J]. J Phys Chem Lett 8(5):961–965

    Article  CAS  PubMed  Google Scholar 

  53. Hui J, Jiang Y, Ömür Ö Gökçinar, et al. (2020) Unveiling the two-step formation pathway of Cs4PbBr6 nanocrystals[J]. Chem Mater 32(11):4574–4583

    Article  CAS  Google Scholar 

  54. Liu Z, Bekenstein Y, Ye X, Nguyen SC, Swabeck J, Zhang D, Lee ST, Yang P, Ma W, Alivisatos AP (2017) Ligand mediated transformation of cesium Lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals[J]. J Am Chem Soc 139(15):5309–5312

    Article  CAS  PubMed  Google Scholar 

  55. Aswathy SP, Vaisakh SS, George S (2021) Thio amino acids-modified manganese doped ZnS quantum dot probes for the photoluminescent sensing of hazardous nitro aromatics[J]. Mater Today: Proc 41(3):628–637

    CAS  Google Scholar 

  56. Zhang L, Wang J, Du T et al (2019) NH2-MIL-53(Al) metal-organic framework as the smart platform for simultaneous high-performance detection and removal of Hg2+[J]. Inorg Chem 58(19):12573–12581

    Article  CAS  PubMed  Google Scholar 

  57. Qian L, Shi J, Sun J et al (2011) Graphene-assisted matrix solid-phase dispersion for extraction of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogs from environmental samples[J]. Anal Chim Acta 708(1–2):61–68

    Google Scholar 

  58. Li Y, Hu J, Liu W, Jin L, Zhou P, Zhang Y, Zhang B, Dahlgren RA, Wang X, Zhou Y (2019) Magnetic effervescent tablet-assisted ionic liquid-based dispersive liquid-liquid microextraction of polybrominated diphenyl ethers in liquid matrix samples[J]. Talanta 195:785–795

    Article  CAS  PubMed  Google Scholar 

  59. Song S, ChenYang MS et al (2020) Simultaneou determination of polybrominated diphenyl ethers and hydroxylated analogues in human serum using high-performance liquid chromatography- inductively coupled plasma mass spectrometry[J]. J Chromatogr B 1147:122130

    Article  CAS  Google Scholar 

  60. Gao X, Ma Z, Liu X et al (2020) A fluorescence resonance energy transfer biosensor based on graphene quantum dots and protoporphyrin IX for the detection of melamine[J]. J Fluoresc 30(6):1463–1468

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515012169, No. 2021A1515011513) and the National Natural Science Foundation of China (No. 81573678).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinmin Guo or Kang Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 11.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Ye, J., Duan, D. et al. Aspartic acid assisted one-step synthesis of stable CsPbX3@Asp-Cs4PbX6 by in situ growth in NH2-MIL-53 for ratiometric fluorescence detection of 4-bromophenoxybenzene. Microchim Acta 188, 204 (2021). https://doi.org/10.1007/s00604-021-04863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04863-5

Keywords

Navigation