Skip to main content
Log in

APTES and CTAB Synergistic Induce a Heterozygous CsPbBr3/Cs4PbBr6 Perovskite Composite and its Application on the Sensitive Fluorescent Detection of Iodide ions

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Recently, all-inorganic halide perovskite quantum dots (IPQD) as a new fluorescent material with excellent fluorescence properties have attracted wide attention. However, their instability in polar solvents is the main factor hindering their application in analysis. Herein, a heterozygous perovskite (CsPbBr3/Cs4PbBr6) was simultaneously prepared and stabilized by a silylanization strategy using (3-aminopropyl)-triethoxysilane (APTES) and cetyltrimethyl ammonium bromide (CTAB) assisted precipitation encapsulation method. The synthesized CsPbBr3/Cs4PbBr6 emitted an independent fluorescence at 520 nm. The obtained CsPbBr3/Cs4PbBr6 exhibited good stability in ethanol/water mixtures. It was used as a fluorescent probe for sensitively detecting iodide ions (I) by fluorescence quenching mechanism in the concentration range of 1 ~ 70.0 µM with the detection limit (LOD) of 0.83 µM (relative standard deviation (RSD) = 1.33%, n = 20). The simplicity and high selectivity of the proposed fluorescent analysis method were the prominent features. This work could be extended to the other target ion detection by a perovskite fluorescent quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. De la Vieja A, Santisteban P (2018) Role of iodide metabolism in physiology and cancer. Endocrine-related Cancer 25(4):R225–R245. https://doi.org/10.1530/ERC-17-0515

    Article  PubMed  Google Scholar 

  2. Eftychia GK, Roupas ND, Markou KB (2017) Effect of excess iodine intake on thyroid on human health. Minerva Med 108(2):136–146. https://doi.org/10.23736/S0026-4806.17.04923-0

    Article  Google Scholar 

  3. Nitschke U, Stengel DB (2015) A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem 172:326–334. https://doi.org/10.1016/j.foodchem.2014.09.030

    Article  CAS  PubMed  Google Scholar 

  4. Rutz C, Schmolke L, Gvilava V et al (2017) Anion analysis of ionic liquids and ionic liquid purity assessment by ion chromatography. Z für Anorganische und Allgemeine Chemie 643(1):130–135. https://doi.org/10.1002/zaac.201600437

    Article  CAS  Google Scholar 

  5. Wang ZZ, Deguchi Y, Yan JJ et al (2015) Rapid detection of mercury and iodine using laser breakdown time-of-flight mass spectrometry. Spectrosc Lett 48(2):128–138. https://doi.org/10.1080/00387010.2013.859158

    Article  ADS  CAS  Google Scholar 

  6. Wang S, Xie T, Dong X et al (2019) Determination of iodine species in seafood by ionic liquid–based in-line solid-phase extraction-capillary electrophoresis. Food Anal Methods 12:2139–2149. https://doi.org/10.1007/s12161-019-01553-0

    Article  Google Scholar 

  7. Yu F, Huang H, Shi J et al (2021) A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. Spectrochim Acta Part A Mol Biomol Spectrosc 255:119738. https://doi.org/10.1016/j.saa.2021.119738

    Article  CAS  Google Scholar 

  8. Zhang J, Li Y, Han S (2019) Simultaneous detection of iodide and mercuric ions by nitrogen-sulfur co-doped graphene quantum dots based on flow injection turn off-on chemiluminescence analysis system. Microchem J 147:1141–1146. https://doi.org/10.1016/j.microc.2019.04.039

    Article  CAS  Google Scholar 

  9. Park B, Kang SM, Lee GW et al (2019) Fabrication of CsPbBr3 perovskite quantum dots/cellulose-based colorimetric sensor: dual-responsive on-site detection of chloride and iodide ions. Ind Eng Chem Res 59(2):793–801. https://doi.org/10.1021/acs.iecr.9b05946

    Article  CAS  Google Scholar 

  10. Chen LC, Tien YH, Tian J (2022) Influence of surface passivation on perovskite CsPbBr1. 2I1. 8 quantum dots and application of high purity red light-emitting diodes. J Alloys Compd 892:162140. https://doi.org/10.1016/j.jallcom.2021.162140

    Article  CAS  Google Scholar 

  11. Li X, Wu Y, Zhang S et al (2016) CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Adv Funct Mater 26(15):2435–2445. https://doi.org/10.1002/adfm.201600109

    Article  CAS  Google Scholar 

  12. Zhang F, Shi ZF, Ma ZZ et al (2018) Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale 10(43):20131–20139. https://doi.org/10.1039/C8NR07022A

    Article  CAS  PubMed  Google Scholar 

  13. Shellaiah M, Sun KW (2020) Review on sensing applications of perovskite nanomaterials. Chemosensors 8(3):55. https://doi.org/10.3390/chemosensors8030055

    Article  CAS  Google Scholar 

  14. Shen J, Zhu Q (2022) Stability strategies of perovskite quantum dots and their extended applications in extreme environment: a review. Mater Res Bull 111987. https://doi.org/10.1016/j.materresbull.2022.111987

  15. Zou J, Li M, Zhang X et al (2022) Perovskite quantum dots: synthesis, applications, prospects, and challenges. J Appl Phys 132(22). https://doi.org/10.1063/5.0126496

  16. Ding N, Zhou D, Sun X et al (2018) Highly stable and water-soluble monodisperse CsPbX3/SiO2 nanocomposites for white-LED and cells imaging. Nanotechnology 29(34):345703. https://doi.org/10.1088/1361-6528/aac84d

    Article  CAS  PubMed  Google Scholar 

  17. Yoo JH, Choi SH, Kwon SB et al (2019) Synthesis of a silica coated fully-inorganic perovskite with enhanced moisture stability. New J Chem 43(42):16685–16690. https://doi.org/10.1039/C9NJ03796A

    Article  CAS  Google Scholar 

  18. Trinh CK, Lee H, So MG et al (2021) Synthesis of chemically stable ultrathin SiO2-Coated core–Shell Perovskite QDs via modulation of Ligand Binding Energy for all-solution-processed light-emitting diodes. ACS Appl Mater Interfaces 13(25):29798–29808. https://doi.org/10.1021/acsami.1c06097

    Article  CAS  PubMed  Google Scholar 

  19. Cao P, Yang B, Zheng F et al (2020) High stability of silica-wrapped CsPbBr3 perovskite quantum dots for light emitting application. Ceram Int 46(3):3882–3888. https://doi.org/10.1016/j.ceramint.2019.10.114

    Article  CAS  Google Scholar 

  20. Qiu L, Yang H, Dai Z et al (2020) Highly efficient and stable CsPbBr3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs. Inorg Chem Front 7(10):2060–2071. https://doi.org/10.1039/D0QI00208A

    Article  CAS  Google Scholar 

  21. Geng Y, Guo J, Wang H et al (2022) Large-scale production of Ligand‐Engineered robust lead Halide Perovskite nanocrystals by a Droplet‐Based Microreactor System. Small 18(19):2200740. https://doi.org/10.1002/smll.202200740

    Article  CAS  Google Scholar 

  22. Zhang M, Tian ZQ, Zhu DL et al (2018) Stable CsPbBr3 perovskite quantum dots with high fluorescence quantum yields. New J Chem 42(12):9496–9500. https://doi.org/10.1039/C8NJ01191E

    Article  CAS  Google Scholar 

  23. He K, Shen C, Zhu Y et al (2020) Stable luminescent CsPbI3 quantum dots passivated by (3-aminopropyl) triethoxysilane. Langmuir 36(34):10210–10217. https://doi.org/10.1021/acs.langmuir.0c01688

    Article  CAS  PubMed  Google Scholar 

  24. Lee SY, Jeon S, Ahn J et al (2021) Highly stretchable white-light electroluminescent devices with gel-type silica-coated all-inorganic perovskite. Appl Surf Sci 563:150229. https://doi.org/10.1016/j.apsusc.2021.150229

    Article  CAS  Google Scholar 

  25. Pan Z, Zhu X, Xu T et al (2023) Highly stable CsPbI3 Perovskite Quantum dots enabled by single SiO2 coating toward Down-Conversion light-emitting diodes. Appl Sci 13(13):7529. https://doi.org/10.3390/app13137529

    Article  CAS  Google Scholar 

  26. Zhai X, Guo J, Zhang W et al (2020) Effect of Zeta potential on coating morphology of SiO2-coated copper powder and conductivity of copper film. Chem Pap 74:2123–2131. https://doi.org/10.1007/s11696-020-01061-0

    Article  CAS  Google Scholar 

  27. Wu Y, Wei C, Li X et al (2018) In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett 3(9):2030–2037. https://doi.org/10.1021/acsenergylett.8b01025

    Article  CAS  Google Scholar 

  28. Yang D, Li X, Wu Y et al (2019) Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv Opt Mater 7(11):1900276. https://doi.org/10.1002/adom.201900276

    Article  CAS  Google Scholar 

  29. bin Mohd Yusoff AR, Vasilopoulou M, Georgiadou DG et al (2021) Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ Sci 14(5):2906–2953. https://doi.org/10.1039/D1EE00062D

    Article  CAS  Google Scholar 

  30. Tawil CA, Kurdi RE, Patra D (2022) Cesium lead bromide perovskites: Synthesis, Stability, and Photoluminescence Quantum Yield Enhancement by Hexadecyltrimethylammonium Bromide Doping. ACS Omega 7(24):20872–20880. https://doi.org/10.1021/acsomega.2c01490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou J, Lin H, Yu Y et al (2020) Bright luminous and stable CsPbBr3@PS microspheres prepared via Facile Anti-solvent Method using CTAB as double modifier. Chemistry–A Eur J 26(46):10528–10533. https://doi.org/10.1002/chem.202000835

    Article  CAS  Google Scholar 

  32. Lin YT, Hsieh CH, Chu SY (2020) Effect of phase transition on SiO2-coated CsPbBr3/Cs4PbBr6 quantum dots: air-stability and quantum efficiency improvement. Ceram Int 46(8):11563–11569. https://doi.org/10.1016/j.ceramint.2020.01.183

    Article  CAS  Google Scholar 

  33. Bao Z, Chiu HD, Wang W et al (2020) Highly luminescent CsPbBr3@Cs4PbBr6 nanocrystals and their application in electroluminescent emitters. J Phys Chem Lett 11(23):10196–10202. https://doi.org/10.1021/acs.jpclett.0c03142

    Article  CAS  PubMed  Google Scholar 

  34. Rao L, Sun B, Liu Y et al (2023) Highly stable and photoluminescent CsPbBr3/Cs4PbBr6 composites for White-Light-Emitting diodes and visible light communication. Nanomaterials 13(2):355. https://doi.org/10.3390/nano13020355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. She WZ, Zhao RX, Liu JZ et al (2022) Selective detection of folic acid using a water-stable fluorescent CsPbBr3/Cs4PbBr6 Perovskite Nanocrystal Probe. Chemosensors 11(1):19. https://doi.org/10.3390/chemosensors11010019

    Article  CAS  Google Scholar 

  36. Thuy TT, Huy BT, Kumar AP et al (2021) Highly stable Cs4PbBr6/CsPbBr3 perovskite nanoparticles as a new fluorescence nanosensor for selective detection of trace tetracycline in food samples. J Ind Eng Chem 104:437–444. https://doi.org/10.1016/j.jiec.2021.08.046

    Article  CAS  Google Scholar 

  37. Ghosh G, Jana B, Sain S et al (2019) Influence of shape on the carrier relaxation dynamics of CsPbBr3 perovskite nanocrystals. Phys Chem Chem Phys 21(35):19318–19326. https://doi.org/10.1039/C9CP03386F

    Article  CAS  PubMed  Google Scholar 

  38. Li M, Zhang X, Yang P (2021) Controlling the growth of a SiO2 coating on hydrophobic CsPbBr3 nanocrystals towards aqueous transfer and high luminescence. Nanoscale 13(6):3860–3867. https://doi.org/10.1039/D0NR08325A

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Ma W, Liang D et al (2022) High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. EScience 2(6):646–654. https://doi.org/10.1016/j.esci.2022.10.005

    Article  Google Scholar 

  40. Wang B, Zhang S, Liu B, et a (2020) Stable CsPbBr3: Sn@SiO2 and Cs4PbBr6: Sn@SiO2 core–shell quantum dots with tunable color emission for light-emitting diodes. ACS Appl Nano Mater 3(3):3019–3027. https://doi.org/10.1021/acsanm.0c00299

    Article  CAS  Google Scholar 

  41. Bai T, Wang S, Zhang K et al (2023) High stability and strong luminescence CsPbBr3/Cs4PbBr6 thin films for all-inorganic perovskite light-emitting diodes. RSC Adv 13(35):24413–24422. https://doi.org/10.1039/D3RA03947A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang T, Wei X, Zong Y et al (2020) An efficient and stable fluorescent sensor based on APTES-functionalized CsPbBr3 perovskite quantum dots for ultrasensitive tetracycline detection in ethanol. J Mater Chem C 8(35):12196–12203. https://doi.org/10.1039/D0TC02852E

    Article  Google Scholar 

  43. Shen Z, Song P, Qiao B et al (2019) Impeding anion exchange to improve composition stability of CsPbX3 (X = cl, br) nanocrystals through facilely fabricated Cs4PbX6 shell. Chin Phys B 28(8):086102. https://doi.org/10.1088/1674-1056/28/8/086102

    Article  ADS  CAS  Google Scholar 

  44. Peng X, Chen J, Wang F et al (2020) One-pot synthesis of CsPbBr3/Cs4PbBr6 perovskite composite. Optik 208:164579. https://doi.org/10.1016/j.ijleo.2020.164579

    Article  ADS  CAS  Google Scholar 

  45. Wang S, Chen D, Xu K et al (2023) Organic polystyrene and inorganic silica double shell protected lead halide perovskite nanocrystals with high emission efficiency and superior stability. Nano Res 1–8. https://doi.org/10.1007/s12274-023-5489-1

  46. Fu YB, Wen QL, Ding HT et al (2022) Green and simple synthesis of NH2-functionalized CsPbBr3 perovskite nanocrystals for detection of iodide ion. Microchem J 182:107892. https://doi.org/10.1016/j.microc.2022.107892

    Article  CAS  Google Scholar 

  47. Chen D, Li J, Chen X et al (2019) Grinding synthesis of APbX3 (A = MA, FA, cs; X = cl, br, I) Perovskite Nanocrystals. ACS Appl Mater Interfaces 11(10):10059–10067. https://doi.org/10.1021/acsami.8b19002

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Zhang F, Ge Y et al (2018) Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light‐emitting applications. Adv Funct Mater 28(16):1706567. https://doi.org/10.1002/adfm.201706567

    Article  CAS  Google Scholar 

  49. Wang W, Wang D, Fang F et al (2018) CsPbBr3/Cs4PbBr6 nanocomposites: formation mechanism, large-scale and green synthesis, and application in white light-emitting diodes. Cryst Growth Des 18(10):6133–6141. https://doi.org/10.1021/acs.cgd.8b01013

    Article  CAS  Google Scholar 

  50. Wang Z, Zhang Y, Liu X et al (2021) High stability and strong luminescence CsPbBr3/Cs4PbBr6 perovskite nanocomposite: large-scale synthesis, reversible luminescence, and anti‐counterfeiting application. Adv Mater Technol 6(12):2100654. https://doi.org/10.1002/admt.202100654

    Article  CAS  Google Scholar 

  51. Shankar H, Bansal P, Yu WW et al (2020) Aqueous precursor induced morphological change and improved water stability of CsPbBr3 nanocrystals. Chemistry–A Eur J 26(53):12242–12248. https://doi.org/10.1002/chem.202002499

    Article  CAS  Google Scholar 

  52. Wu L, Hu H, Xu Y et al (2017) From nonluminescent Cs4PbX6 (X = cl, br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett 17(9):5799–5804. https://doi.org/10.1021/acs.nanolett.7b02896

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Schmidt LC, Pertegás A, González-Carrero S et al (2014) Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc 136(3):850–853. https://doi.org/10.1021/ja4109209

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez-Pedro V, Veldhuis SA, Begum R et al (2018) Recovery of shallow charge-trapping defects in CsPbX3 nanocrystals through specific binding and encapsulation with amino-functionalized silanes. ACS Energy Lett 3(6):1409–1414. https://doi.org/10.1021/acsenergylett.8b00498

    Article  CAS  Google Scholar 

  55. Alizadeh N, Akbarinejad A, Hosseinkhani S et al (2019) Synthesis of highly fluorescent water-soluble polypyrrole for cell imaging and iodide ion sensing. Anal Chim Acta 1084:99–105. https://doi.org/10.1016/j.aca.2019.08.008

    Article  CAS  PubMed  Google Scholar 

  56. Hao X, Dai S, Wang J et al (2021) Synthesis of blue fluorescent carbon dots and their application in detecting mercury and iodine based on off–on mode. Luminescence 36(3):721–732. https://doi.org/10.1002/bio.3993

    Article  CAS  PubMed  Google Scholar 

  57. Hao XL, Pan XH, Gao Y et al (2020) Facile synthesis of nitrogen-doped green-emission carbon dots as fluorescent off–on probes for the highly selective sensing mercury and iodine ions. J Nanosci Nanotechnol 20(4):2045–2054. https://doi.org/10.1166/jnn.2020.17374

    Article  CAS  PubMed  Google Scholar 

  58. Chen J, Liu X, Hou X et al (2020) Label-free iodide detection using functionalized carbon nanodots as fluorescent probes. Anal Bioanal Chem 412:2893–2901. https://doi.org/10.1007/s00216-020-02530-x

    Article  CAS  PubMed  Google Scholar 

  59. Zou X, Hu J, Zhu H et al (2023) Ultrasensitive turn-off fluorescence detection of iodide using carbon dots/gold nanocluster as fluorescent nanoprobe. Microchem J 185:108275. https://doi.org/10.1016/j.microc.2022.108275

    Article  CAS  Google Scholar 

  60. Zhang B, He Y, Fan Z (2018) Nitrogen-doped graphene quantum dots as highly sensitive and selective fluorescence sensor detection of iodide ions in milk powder. J Photochem Photobiol A 367:452–457. https://doi.org/10.1016/j.jphotochem.2018.09.014

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Anhui Province (Grant Number 2108085ME184), the Innovation Team of the Education Department of Anhui Province (2022AH010019 and zxjj22047), and the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University (Grant Number 2020QDZ36).

Author information

Authors and Affiliations

Authors

Contributions

Lingyu Jiang: Methodology, Investigation, Validation, Writing original draft. Yunyun Qiu Conceptualization, Methodology. Li Xiang: Conceptualization, Writing - review & editing, Jianshe Tang: Supervision, Conceptualization, Resources, Writing - review & editing, Project administration, Funding acquisition. All authors approved the manuscript for publication.

Corresponding author

Correspondence to Jianshe Tang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Qiu, Y., Xiang, L. et al. APTES and CTAB Synergistic Induce a Heterozygous CsPbBr3/Cs4PbBr6 Perovskite Composite and its Application on the Sensitive Fluorescent Detection of Iodide ions. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03623-x

Keywords

Navigation