Skip to main content
Log in

Electrochemiluminescence from a biocatalysis accelerated N-(aminobutyl)-N-(ethylisoluminol)/dissolved O2 system for microRNA detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A kind of biocatalyst, laccase, has been employed as a biocompatible coreactant accelerator to efficiently catalyze coreactant (dissolved O2) for generating high local concentration of superoxide radical (O2•−), acquiring high-intense electrochemiluminescence (ECL) emission of ABEI (N-(aminobutyl)-N-(ethylisoluminol))/dissolved O2 system. Furthermore, a modified strand displacement reaction with excellent amplification efficiency was constructed by replacing traditional single strand DNA to the hairpin DNA as template for triggering the immobilization of more signal probes. As a result, the biosensor for microRNA-21 determination has preeminent selectivity and favorable sensitivity with detection limit down to 80.8 aM. Significantly, the devised strategy has blazed a new path for seeking more coreaction accelerators with splendid biocompatibility thus promoting the application of ternary ECL systems in biological analysis and clinical diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maar RR, Zhang RZ, Stephens DG, Ding ZF, Gilroy JB (2019) Near-infrared photoluminescence and electrochemiluminescence from a remarkably simple boron difluoride formazanate dye. Angew Chem Int Ed 58:1052–1056

    Article  CAS  Google Scholar 

  2. Zhang P, Jiang J, Yuan R, Zhuo Y, Chai Y (2018) Highly ordered and field-free 3D DNA nanostructure: the next generation of DNA nanomachine for rapid single-step sensing. J Am Chem Soc 140:9361–9364

    Article  CAS  Google Scholar 

  3. Zanut A, Palomba F, Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L (2020) Chameleon metals: autonomous nano-texturing and composition inversion on liquid metals surfaces. Angew Chem Int Ed 59:1

    Article  Google Scholar 

  4. Ying Z, Chen S, Luo X, Chai Y, Yuan R (2018) Ternary electrochemiluminescence nanostructure of Au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers. Anal Chem 90:10024

    Article  Google Scholar 

  5. Tang TT, Yang F, Wang L, Zhao CX, Nie F, Yang GP (2020) A sandwich electrochemiluminescent assay for determination of concanavalin A with triple signal amplification based on MoS2NF@MWCNTs modified electrode and Zn-MOF encapsulated luminol. Microchim Acta 187:523

    Article  CAS  Google Scholar 

  6. Gu W, Wang H, Jiao L, Wu Y, Chen Y, Hu L, Gong J, Du D, Zhu C (2020) Single-atom iron boosts electrochemiluminescence. Angew Chem Int Ed 59:3534–3538

    Article  CAS  Google Scholar 

  7. Xing HH, Peng C, Xue Y, Fan YC, Li J, Wang EK (2020) In situ formed catalytic interface for boosting chemiluminescence. Anal Chem 92:10108–10113

    Article  CAS  Google Scholar 

  8. Liu JL, Tang ZL, Zhuo Y, Chai YQ, Yuan R (2017) Ternary electrochemiluminescence system based on rubrene microrods as luminophore and Pt nanomaterials as coreaction accelerator for ultrasensitive detection of microRNA from cancer cells. Anal Chem 89(17):9108–9115

    Article  CAS  Google Scholar 

  9. Zhang R, Chen AY, Yu YQ, Chai YQ, Zhuo Y, Yuan R (2018) Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Microchim Acta 185:432

    Article  Google Scholar 

  10. Wu FF, Zhou Y, Zhang H, Yuan R, Chai YQ (2018) Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem 90(3):2263–2270

    Article  CAS  Google Scholar 

  11. Pan J, Wang X, Huang Q, Shen C, Koh Z, Wang Q, Engel A, Bahnemann DW (2014) Large-scale synthesis of urchin-like mesoporous TiO2 hollow spheres by targeted etching and their photoelectrochemical properties. Adv Funct Mater 24:95–104

    Article  CAS  Google Scholar 

  12. Roberts JG, Voinov AM, Schmidt AC, Smirnova TI, Sombers LA (2016) The hydroxyl radical is a critical intermediate in the voltammetric detection of hydrogen peroxide. J Am Chem Soc 138:2516–2519

    Article  CAS  Google Scholar 

  13. Fang DD, Zeng BS, Zhang SP, Dai H, Lin YY (2020) A self-enhanced electrochemiluminescent ratiometric zearalenone immunoassay based on the use of helical carbon nanotubes. Microchim Acta 187:303

    Article  CAS  Google Scholar 

  14. Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C, Urban G (2019) CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater 31:1905311

    Article  CAS  Google Scholar 

  15. Liu L, Yao Y, Ma KJ, Shangguan CJ, Jiao SL, Zhu SY, Xu XX (2021) Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sensors Actuators B Chem 331:129470

    Article  CAS  Google Scholar 

  16. Xian L, Ge H, Xu F, Xu N, Fan J, Shao K, Peng X (2019) Intracellular microRNA imaging using telomerase-catalyzed FRET ratioflares with signal amplification. Chem Sci 10:7111–7118

    Article  CAS  Google Scholar 

  17. Yang K, Li JN, de la Chapelle ML, Huang GR, Wang YX, Zhang JB, Xu DG, Yao JQ, Yang X, Fu WL (2021) A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens Bioelectron 175:112874

    Article  CAS  Google Scholar 

  18. Ye J, Liu G, Yan M, Zhu Q, Zhu L, Huang J, Yang X (2019) Highly luminescent and self-enhanced electrochemiluminescence of tris(bipyridine) ruthenium(II) nanohybrid and its sensing application for label-free detection of microRNA. Anal Chem 91:13237–13243

    Article  CAS  Google Scholar 

  19. Xue C, Zhang S, Ouyang C, Chang D, Salena B, Li Y, Wu Z (2018) Target-induced catalytic assembly of Y-shaped DNA and its application for in situ imaging of microRNAs. Angew Chem Int Ed 57:9739–9743

    Article  CAS  Google Scholar 

  20. Yan N, Wang XJ, Lin L, Song TJ, Sun PJ, Tian HY, Liang HJ, Chen XS (2018) Gold nanorods electrostatically binding nucleic acid probe for in vivo microRNA amplified detection and photoacoustic imaging-guided photothermal therapy. Adv Funct Mater 28:1800490

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the NNSF of China (21974108, and 21775124), and Postdoctoral Science Foundation of China (2019 M663418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Liao, H., Chai, Y. et al. Electrochemiluminescence from a biocatalysis accelerated N-(aminobutyl)-N-(ethylisoluminol)/dissolved O2 system for microRNA detection. Microchim Acta 188, 205 (2021). https://doi.org/10.1007/s00604-021-04854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04854-6

Keywords

Navigation