Skip to main content
Log in

A self-healing smart photonic crystal hydrogel sensor for glucose and related saccharides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A self-healing smart PhC hydrogel sensor that combines the optical property of photonic crystal and the dynamic regeneration property of boronate ester bond has been prepared for determination of glucose and related saccharides using Debye diffraction ring detection. The boronate ester bond formed through phenylboronic acid and dopamine endows the hydrogel network self-healing ability, and the tensile stress of the healing hydrogel can recover to 94.4%; this excellent self-healing property can effectively improve the reliability and lifetime of the hydrogel. Due to the high bonding capacity between 1,2- and 1,3-diol and phenylboronic acid, the hydrogel sensor has a good recognition ability for glucose and related saccharides. The reaction between the monosaccharides and the phenylboronic acid group makes the sensor swell and the diameter of the Debye diffraction ring decrease. The sensor shows good reuse and responsive ability for saccharides; the RSD of the recoverability assays is 4.3%. The determination range of the sensor to glucose is 0.5 to 12 mM. The sensor also has good response to glucose in urine, exhibiting potential application value in the preliminary screening of diabetes. Although the sensor has poor selectivity for specific monosaccharides, the process of measuring the Debye ring makes the determination no longer rely on expensive and complicated equipment and greatly simplifies the determining process and reduces the cost of determination, which shows a broad application prospect.

Graphical abstract

The boronate ester bond formed through phenylboronic acid and dopamine results in the self-healing property of hydrogel network, which can effectively improve the reliability and lifetime of hydrogel. And due to the high bonding capacity between 1,2- and 1,3-diol and phenylboronic acid, the smart hydrogel sensor has a good recognition ability for glucose and related saccharides. The reaction between the monosaccharides and the phenylboronic acid group breaks the original boronate ester bond; this will lead to a decrease in cross-linking density of the PhC hydrogel sensor and further makes the sensor swell and the diameter of the Debye diffraction ring decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Appel EA, Del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41(18):6195–6214. https://doi.org/10.1039/c2cs35264h

    Article  CAS  PubMed  Google Scholar 

  2. Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210. https://doi.org/10.1016/j.addr.2003.08.013

    Article  CAS  PubMed  Google Scholar 

  3. Hu T, Wu Y, Zhao X, Wang L, Bi L, Ma PX, Guo B (2019) Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chem Eng J 366:208–222. https://doi.org/10.1016/j.cej.2019.02.072

    Article  CAS  Google Scholar 

  4. Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X (2019) pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 536:224–234. https://doi.org/10.1016/j.jcis.2018.10.056

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4):4070–4076. https://doi.org/10.1021/acsnano.5b00121

    Article  CAS  PubMed  Google Scholar 

  6. Xu Z, Liu W (2018) Poly(N-acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels. Chem Commun 54(75):10540–10553. https://doi.org/10.1039/c8cc04614j

    Article  CAS  Google Scholar 

  7. Cui S, Yu L, Ding J (2018) Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polymerica Sinica (8):997-1015. https://doi.org/10.11777/j.issn1000-3304.2018.18084

  8. Lu X, Li Y, Feng W, Guan S, Guo P (2019) Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond. Colloids Surf A Physicochem Eng Asp 561:325–331. https://doi.org/10.1016/j.colsurfa.2018.10.071

    Article  CAS  Google Scholar 

  9. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrinyi M, Osada Y, Chen YM (2015) Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater 25(9):1352–1359. https://doi.org/10.1002/adfm.201401502

    Article  CAS  Google Scholar 

  10. Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7(43):24023–24031. https://doi.org/10.1021/acsami.5b06896

    Article  CAS  PubMed  Google Scholar 

  11. Guo Y, Zhou X, Tang Q, Bao H, Wang G, Saha P (2016) A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J Mater Chem A 4(22):8769–8776. https://doi.org/10.1039/c6ta01441k

    Article  CAS  Google Scholar 

  12. Li Z, Hou Z, Fan H, Li H (2017) Organic-inorganic hierarchical self-assembly into robust luminescent supramolecular hydrogel. Adv Funct Mater 27(2). https://doi.org/10.1002/adfm.201604379

  13. Upadhyay A, Kandi R, Rao CP (2018) Injectable, self-healing, and stress sustainable hydrogel of BSA as a functional biocompatible material for controlled drug delivery in cancer cells. ACS Sustain Chem Eng 6(3):3321–3330. https://doi.org/10.1021/acssuschemeng.7b03485

    Article  CAS  Google Scholar 

  14. Ni B, Xie HL, Tang J, Zhang HL, Chen EQ (2016) A self-healing photoinduced-deformable material fabricated by liquid crystalline elastomers using multivalent hydrogen bonds as cross-linkers. Chem Commun 52(67):10257–10260. https://doi.org/10.1039/c6cc04199j

    Article  CAS  Google Scholar 

  15. Liu F, Zhang S, Jin X, Wang W, Tang B (2019) Thermal responsive photonic crystal with function of color switch based on thermochromic system. ACS Appl Mater Interfaces 11:39125–39131. https://doi.org/10.1021/acsami.9b16411

    Article  CAS  PubMed  Google Scholar 

  16. Lee GH, Kim JB, Choi TM, Lee JM, Kim SH (2019) Structural coloration with nonclose-packed array of bidisperse colloidal particles. Small 15(5):1804548. https://doi.org/10.1002/smll.201804548

    Article  CAS  Google Scholar 

  17. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53(13):3318–3335. https://doi.org/10.1002/anie.201307828

    Article  CAS  Google Scholar 

  18. Tang S, Wang C, Liu N, Li Y, Han P, Lu Q (2018) Instantaneous magnetically assembled and hydrophilic photonic crystals with controlled diffraction colors. J Phys Chem C 122(31):18021–18028. https://doi.org/10.1021/acs.jpcc.8b05967

    Article  CAS  Google Scholar 

  19. Wang W, Fan X, Li F, Qiu J, Umair MM, Ren W, Ju B, Zhang S, Tang B (2018) Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Advanced Optical Materials 6(4):1701093. https://doi.org/10.1002/adom.201701093

    Article  CAS  Google Scholar 

  20. Zhang JT, Cai Z, Kwak DH, Liu X, Asher SA (2014) Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A. Analytical Chemistry 86 (18):9036-9041. 0.1021/ac5015854

  21. Wang C, Li F, Bi Y, Guo W (2019) Reversible modulation of 2D photonic crystals with a responsive shape-memory DNA hydrogel film. Adv Mater Interfaces 6(18):1900556. https://doi.org/10.1002/admi.201900556

    Article  CAS  Google Scholar 

  22. Shi W, Cheng M, Chen Q, Wang S, Zhou J, Wu Z (2020) Low-angle-dependent CdS@SiO(2)photonic crystal hydrogel material for visual detection and removal of uranyl ions. Microchim Acta 187(8):476. https://doi.org/10.1007/s00604-020-04456-8

    Article  CAS  Google Scholar 

  23. Chen C, Liu Y, Wang H, Chen G, Wu X, Ren J, Zhang H, Zhao Y (2018) Multifunctional chitosan inverse opal particles for wound healing. ACS Nano 12(10):10493–10500. https://doi.org/10.1021/acsnano.8b06237

    Article  CAS  PubMed  Google Scholar 

  24. Su H, Cheng XR, Endo T, Kerman K (2018) Photonic crystals on copolymer film for label-free detection of DNA hybridization. Biosens Bioelectron 103:158–162. https://doi.org/10.1016/j.bios.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  25. Guo R, Wang DN, Wei YY, Zhang YZ, Yang CG, Xu ZR (2020) Colloidal photonic crystal array chip based on nanoparticle self-assembly on patterned hydrophobic surface for signal-enhanced fluorescent assay of adenosine. Microchim Acta 187(3):194. https://doi.org/10.1007/s00604-020-4164-4

    Article  CAS  Google Scholar 

  26. Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162(1–2):1–34. https://doi.org/10.1007/s00604-008-0947-8

    Article  CAS  Google Scholar 

  27. Mutuyimana FP, Liu J, Na M, Nsanzamahoro S, Rao Z, Chen H, Chen X (2018) Synthesis of orange-red emissive carbon dots for fluorometric enzymatic determination of glucose. Microchim Acta 185(11):518. https://doi.org/10.1007/s00604-018-3041-x

    Article  CAS  Google Scholar 

  28. Zhu J, Du H, Zhang Q, Zhao J, Weng G, Li J, Zhao J (2019) SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating. J Mater Chem C 7(11):3322–3334. https://doi.org/10.1039/c8tc05942j

    Article  CAS  Google Scholar 

  29. Tsao CW, Yang ZJ (2015) High sensitivity and high detection specificity of gold-nanoparticle-grafted nanostructured silicon mass spectrometry for glucose analysis. ACS Appl Mater Interfaces 7(40):22630–22637. https://doi.org/10.1021/acsami.5b07395

    Article  CAS  PubMed  Google Scholar 

  30. Yang S, Li G, Wang G, Zhao J, Gao X, Qu L (2015) Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sensors Actuators B Chem 221:172–178. https://doi.org/10.1016/j.snb.2015.06.110

    Article  CAS  Google Scholar 

  31. Oh SY, Hong SY, Jeong YR, Yun J, Park H, Jin SW, Lee G, Oh JH, Lee H, Lee SS, Ha JS (2018) Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interfaces 10(16):13729–13740. https://doi.org/10.1021/acsami.8b03342

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Chen Z, Cheng F, Zhang Y, Chen L (2017) Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens Bioelectron 89:932–936. https://doi.org/10.1016/j.bios.2016.09.090

    Article  CAS  PubMed  Google Scholar 

  33. Radhakumary C, Sreenivasan K (2011) Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles. Anal Chem 83(7):2829–2833. https://doi.org/10.1021/ac1032879

    Article  CAS  PubMed  Google Scholar 

  34. Reese CE, Asher SA (2002) Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals. J Colloid Interface Sci 248(1):41–46. https://doi.org/10.1006/jcis.2001.8193

    Article  CAS  PubMed  Google Scholar 

  35. Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151):338–341. https://doi.org/10.1038/nature05968

    Article  CAS  PubMed  Google Scholar 

  36. Urakami T, Suzuki J, Yoshida A, Saito H, Mugishima H (2008) Incidence of children with slowly progressive form of type 1 diabetes detected by the urine glucose screening at schools in the Tokyo Metropolitan Area. Diabetes Res Clin Pract 80(3):473–476. https://doi.org/10.1016/j.diabres.2008.01.029

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (21874037 and 21675045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Zhaoyang Wu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wei, Z., Wang, S. et al. A self-healing smart photonic crystal hydrogel sensor for glucose and related saccharides. Microchim Acta 188, 210 (2021). https://doi.org/10.1007/s00604-021-04849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04849-3

Keywords

Navigation