Skip to main content

Advertisement

Log in

A non-enzymatic urine glucose sensor with 2-D photonic crystal hydrogel

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel polymerized crystalline colloidal array (PCCA) sensing material for the detection of urine glucose was developed by embedding a two-dimensional (2-D) polystyrene crystalline colloidal array (CCA) in 3-acrylamidophenylboronic acid (3-APBA)-functionalized hydrogel. After adjusting the cross-linker concentration, this material showed significant sensitivity for glucose under lab conditions, the particle spacing of the PCCA changed from 917 to 824 nm (93 nm) within 3 min as the glucose concentration increased from 0 to 10 mM, and the structural color of the PCCA changed from red through orange, to green, and finally, to cyan. In further experiments, this material was used to semi-quantitatively detect glucose in 20 human urine (HU) samples. Compared with the traditional dry-chemistry method, which was applied widely in clinical diagnosis, the PCCA method was more accurate and cost-effective. Moreover, this method can efficiently avoid the errors induced by most of the urine-interfering elements like vitamin C and ketone body. With a homemade portable optical detector, this low-cost intelligent sensing material can provide a more convenient and efficient strategy for the urine glucose detection in clinical diagnosis and point-of-care monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes—estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53. doi:10.2337/diacare.27.5.1047.

    Article  Google Scholar 

  2. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20. doi:10.1038/414813a.

    Article  CAS  Google Scholar 

  3. Counard CA, Perz JF, Linchangco PC, Christiansen D, Ganova-Raeva L, Xia GL, et al. Acute hepatitis B outbreaks related to fingerstick blood glucose monitoring in two assisted living facilities. J Am Geriatr Soc. 2010;58(2):306–11. doi:10.1111/j.1532-5415.2009.02669.x.

    Article  Google Scholar 

  4. Satish BNVS, Srikala P, Maharudrappa B, Awanti SM, Kumar P, Hugar D. Saliva: a tool in assessing glucose levels in diabetes mellitus. J Int Oral Health : JIOH. 2014;6(2):114–7.

    CAS  Google Scholar 

  5. Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem. 2004;50(12):2353–60. doi:10.1373/clinchem.2004.039701.

    Article  CAS  Google Scholar 

  6. Hu YM, Jiang XM, Zhang LY, Fan J, Wu WT. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. Biosens Bioelectron. 2013;48:94–9. doi:10.1016/j.bios.2013.03.082.

    Article  CAS  Google Scholar 

  7. Kohler E. Policy statement on materials for testing glucose in the urine. The Committee on Materials and Therapeutic Agents, American Diabetes Association. Diabetes Care. 1978;1(1):64–7. doi:10.2337/diacare.1.1.64.

    Article  CAS  Google Scholar 

  8. Thammakhet C, Thavarungkul P, Kanatharana P. Development of an on-column affinity smart polymer gel glucose sensor. Anal Chim Acta. 2011;695(1–2):105–12. doi:10.1016/j.aca.2011.03.062.

    Article  CAS  Google Scholar 

  9. Miyashita M, Ito N, Ikeda S, Murayama T, Oguma K, Kimura J. Development of urine glucose meter based on micro-planer amperometric biosensor and its clinical application for self-monitoring of urine glucose. Biosens Bioelectron. 2009;24(5):1336–40. doi:10.1016/j.bios.2008.07.072.

    Article  CAS  Google Scholar 

  10. Lankelma J, Nie ZH, Carrilho E, Whitesides GM. Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal Chem. 2012;84(9):4147–52. doi:10.1021/ac3003648.

    Article  CAS  Google Scholar 

  11. Ko DH, Jeong TD, Kim S, Chung HJ, Lee W, Chun S, et al. Influence of vitamin C on urine dipstick test results. Ann Clin Lab Sci. 2015;45(4):391–5.

    CAS  Google Scholar 

  12. Holtz JH, Asher SA. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature. 1997;389(6653):829–32.

    Article  CAS  Google Scholar 

  13. Xue F, Meng ZH, Qi FL, Xue M, Wang FY, Chen W, et al. Two-dimensional inverse opal hydrogel for pH sensing. Analyst. 2014;139(23):6192–6. doi:10.1039/c4an00939h.

    Article  CAS  Google Scholar 

  14. Yiou S, Delaye P, Rouvie A, Chinaud J, Frey R, Roosen G, et al. Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt Express. 2005;13(12):4786–91. doi:10.1364/opex.13.004786.

    Article  CAS  Google Scholar 

  15. Lu W, Li HY, Meng ZH, Liang XX, Xue M, Wang QH, et al. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers. J Hazard Mater. 2014;280:588–94. doi:10.1016/j.jhazmat.2014.08.041.

    Article  CAS  Google Scholar 

  16. Xue F, Duan TR, Huang SY, Wang QH, Xue M, Meng ZH. A covalently imprinted photonic crystal for glucose sensing. J Nanomater. 2013:6. doi: 10.1155/2013/530701.

  17. Ge Y, Butler B, Mirza F, Habib-Ullah S, Fei D. Smart molecularly imprinted polymers: recent developments and applications. Macromol Rapid Commun. 2013;34(11):903–15. doi:10.1002/marc.201300069.

    Article  CAS  Google Scholar 

  18. Kimble KW, Walker JP, Finegold DN, Asher SA. Progress toward the development of a point-of-care photonic crystal ammonia sensor. Anal Bioanal Chem. 2006;385(4):678–85. doi:10.1007/s00216-006-0453-y.

    Article  CAS  Google Scholar 

  19. Leca-Bouvier BD, Sassolas A, Blum LJ. Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers. Anal Bioanal Chem. 2014;406(23):5657–67. doi:10.1007/s00216-014-7945-y.

    Article  CAS  Google Scholar 

  20. Zenkl G, Klimant I. Fluorescent acrylamide nanoparticles for boronic acid based sugar sensing—from probes to sensors. Microchim Acta. 2009;166(1–2):123–31. doi:10.1007/s00604-009-0172-0.

    Article  CAS  Google Scholar 

  21. Li S, Davis EN, Anderson J, Lin Q, Wang Q. Development of boronic acid grafted random copolymer sensing fluid for continuous glucose monitoring. Biomacromolecules. 2009;10(1):113–8. doi:10.1021/bm8009768.

    Article  CAS  Google Scholar 

  22. Cai Z, Smith NL, Zhang J-T, Asher SA. Two-dimensional photonic crystal chemical and biomolecular sensors. Anal Chem. 2015;87(10):5013–25. doi:10.1021/ac504679n.

    Article  CAS  Google Scholar 

  23. Xue F, Meng ZH, Wang FY, Wang QH, Xue M, Xu ZB. A 2-D photonic crystal hydrogel for selective sensing of glucose. J Mater Chem A. 2014;2(25):9559–65. doi:10.1039/c4ta01031k.

    Article  CAS  Google Scholar 

  24. Liu PX, Luo QF, Guan Y, Zhang YJ. Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer. 2010;51(12):2668–75. doi:10.1016/j.polymer.2010.04.011.

    Article  CAS  Google Scholar 

  25. Lee K, Asher SA. Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc. 2000;122(39):9534–7. doi:10.1021/ja002017n.

    Article  CAS  Google Scholar 

  26. Holtz JH, Holtz JSW, Munro CH, Asher SA. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem. 1998;70(4):780–91. doi:10.1021/ac970853i.

    Article  CAS  Google Scholar 

  27. Zhang J-T, Chao X, Liu X, Asher SA. Two-dimensional array Debye ring diffraction protein recognition sensing. Chem Commun. 2013;49(56):6337–9. doi:10.1039/c3cc43396j.

    Article  CAS  Google Scholar 

  28. Brooks T, Keevil CW. A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol. 1997;24(3):203–6. doi:10.1046/j.1472-765X.1997.00378.x.

    Article  CAS  Google Scholar 

  29. Golker K, Nicholls IA. The effect of crosslinking density on molecularly imprinted polymer morphology and recognition. Eur Polym J. 2016;75:423–30. doi:10.1016/j.eurpolymj.2016.01.008.

    Article  CAS  Google Scholar 

  30. Sanitoets home test kits. http://www.anytestkits.com/utk-glucose-in-urine.htm. Accessed 22 May 2015.

Download references

Acknowledgments

The financial supports from the National Natural Science Foundation of China (NSFC) (21375009 and U1530141) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zihui Meng or Lili Qiu.

Ethics declarations

All participants provided written informed consent for themselves after having received a complete description of the study, which was approved by the Ethics Committee of The Second Affiliated Hospital of Xi’an Jiaotong University, Shanxi.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Xue, M., He, Q. et al. A non-enzymatic urine glucose sensor with 2-D photonic crystal hydrogel. Anal Bioanal Chem 408, 8317–8323 (2016). https://doi.org/10.1007/s00216-016-9947-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9947-4

Keywords

Navigation