Skip to main content
Log in

Fluorescence resonance energy transfer-thermal lens spectrometry (FRET-TLS) as molecular counting of methamphetamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel and sensitive approach has been presented for the determination of methamphetamine (METH) based on fluorescence resonance energy transfer-thermal lens spectrometry (FRET-TLS). Due to the affinity of fluorescein molecules to the surface of AuNPs through the electrostatic interaction and thereby caused reduction of the distance between fluorescein and AuNPs, the best way for de-excitation of excited fluorescein is FRET. The energy absorbed by fluorescein transferred to AuNPs causes enhancement of the thermal lens effect. The thermal lens of the fluorescence molecule could be enhanced through a proper acceptor. Upon the addition of methamphetamine, the fluorescein molecules are detached from the surface of AuNPs, due to the stronger adsorption of methamphetamine. As a result, the fluorescence of fluorescein recovered, and the thermal lens effect of fluorescein decreased. The mechanism of energy transfer was evaluated by two different methods including time-resolved spectroscopy and thermal lens spectrometry. Under the optimal conditions, the thermal lens signal was linearly proportional to methamphetamine concentration in the range 5 – 80 nM. The limit of detection and limit of quantitation were 1.5 nM and 4.5 nM, respectively. The detection volume and limit of molecules in the detection volume were 960 attoliter and 87 molecules, respectively. The method was successfully applied for the determination of methamphetamine in human blood plasma and urine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shu I, Alexander A, Jones M, Jones J, Negrusz A (2016) Determination of methamphetamine enantiomer composition in human hair by non-chiral liquid chromatography–tandem mass spectrometry method. J Chromatogr B Anal Technol Biomed Life Sci 1028:145–152. https://doi.org/10.1016/j.jchromb.2016.06.015

    Article  CAS  Google Scholar 

  2. Ballester J, Valentine G, Sofuoglu M (2017) Pharmacological treatments for methamphetamine addiction: current status and future directions. Expert Rev Clin Pharmacol 10:305–314. https://doi.org/10.1080/17512433.2017.1268916

    Article  CAS  PubMed  Google Scholar 

  3. Boles TH, Wells MJM (2016) Analysis of amphetamine and methamphetamine in municipal wastewater influent and effluent using weak cation-exchange SPE and LC-MS/MS. Electrophoresis 37:3101–3108. https://doi.org/10.1002/elps.201600271

    Article  CAS  PubMed  Google Scholar 

  4. Nakashima K, Kaddoumi A, Ishida Y, Itoh T, Taki K (2003) Determination of methamphetamine and amphetamine in abusers’ plasma and hair samples with HPLC-FL. Biomed Chromatogr 17:471–476. https://doi.org/10.1002/bmc.278

    Article  CAS  PubMed  Google Scholar 

  5. Kumihashi M, Ameno K, Shibayama T, Suga K, Miyauchi H, Jamal M, Wang W, Uekita I, Ijiri I (2007) Simultaneous determination of methamphetamine and its metabolite, amphetamine, in urine using a high performance liquid chromatography column-switching method. J Chromatogr B Anal Technol Biomed Life Sci 845:180–183. https://doi.org/10.1016/j.jchromb.2006.07.049

    Article  CAS  Google Scholar 

  6. Makino Y, Urano Y, Nagano T (2002) Impurity profiling of ephedrines in methamphetamine by high-performance liquid chromatography. J Chromatogr A 947:151–154. https://doi.org/10.1016/S0021-9673(01)01594-1

    Article  CAS  PubMed  Google Scholar 

  7. Kato N, Fujita S, Ohta H, Fukuba M, Toriba A, Hayakawa K (2008) Thin layer chromatography/fluorescence detection of 3,4-methylenedioxy- methamphetamine and related compounds. J Forensic Sci 53:1367–1371. https://doi.org/10.1111/j.1556-4029.2008.00870.x

    Article  CAS  PubMed  Google Scholar 

  8. Iio R, Chinaka S, Tanaka S, Takayama N, Hayakawa K (2003) Simultaneous chiral determination of methamphetamine and its metabolites in urine by capillary electrophoresis-mass spectrometry. Analyst 128:646–650. https://doi.org/10.1039/b212820a

    Article  CAS  PubMed  Google Scholar 

  9. Rezazadeh M, Yamini Y, Seidi S (2015) Application of a new nanocarbonaceous sorbent in electromembrane surrounded solid phase microextraction for analysis of amphetamine and methamphetamine in human urine and whole blood. J Chromatogr A 1396:1–6. https://doi.org/10.1016/j.chroma.2015.03.077

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Fan Y, Huang Z, Liu H, Wang L, Shen Z, Watanabe I (2020) Determination of ketamine, methamphetamine and 3,4-methylenedioxymethamphetamine in human hair by flash evaporation-gas chromatography/mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 1153:122275. https://doi.org/10.1016/j.jchromb.2020.122275

    Article  CAS  Google Scholar 

  11. Kwon NH, Lee YR, Kim HS, Cheong JC, Kim JY (2019) Hybrid solid-phase extraction for selective determination of methamphetamine and amphetamine in dyed hair by using gas chromatography–mass spectrometry. Molecules 24:1–12. https://doi.org/10.3390/molecules24132501

    Article  CAS  Google Scholar 

  12. Hassanzadeh J, Khataee A, Lotfi R (2017) Sensitive fluorescence and chemiluminescence procedures for methamphetamine detection based on CdS quantum dots. Microchem J 132:371–377. https://doi.org/10.1016/j.microc.2017.02.026

    Article  CAS  Google Scholar 

  13. Wang T, Shen B, Shi Y, Xiang P, Yu Z (2015) Chiral separation and determination of R/S-methamphetamine and its metabolite R/S-amphetamine in urine using LC-MS/MS. Forensic Sci Int 246:72–78. https://doi.org/10.1016/j.forsciint.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  14. Kuroda N, Nomura R, Al-Dirbashi O et al (1998) Determination of methamphetamine and related compounds by capillary electrophoresis with UV and laser-induced fluorescence detection. J Chromatogr A 798:325–334. https://doi.org/10.1016/S0021-9673(97)00950-3

    Article  CAS  PubMed  Google Scholar 

  15. Franko M, Tran CD (2010) Thermal lens spectroscopy

  16. Proskurnin MA, Volkov DS, Gor’kova TA et al (2015) Advances in thermal lens spectrometry. J Anal Chem 70:249–276. https://doi.org/10.1134/S1061934815030168

    Article  CAS  Google Scholar 

  17. Cabrera H, Goljat L, Korte D, Marín E, Franko M (2020) A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry. Anal Chim Acta 1100:182–190. https://doi.org/10.1016/j.aca.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  18. Shokoufi N, Madarshahian S (2012) thermal lens spectrometry: techniques and instrumentation. LAP LAMBERT Academic Publishing (June 5, 2012)

  19. Vaziri Heshi S, Shokoufi N, Reihani SNS (2020) Optical concentration of gold nanoparticles as a new concept of analytical sensitivity. Instrum Sci Technol 49:1–13. https://doi.org/10.1080/10739149.2020.1846052

    Article  CAS  Google Scholar 

  20. Le THH, Mawatari K, Shimizu H, Kitamori T (2014) Detection of zeptomole quantities of nonfluorescent molecules in a 101 nm nanochannel by thermal lens microscopy. Analyst 139:2721–2725. https://doi.org/10.1039/c4an00344f

    Article  CAS  PubMed  Google Scholar 

  21. Nebu J, Anjali Devi JS, Aparna RS, Aswathy B, Aswathy AO, Sony G (2018) Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process. Microchim Acta 185:532. https://doi.org/10.1007/s00604-018-3050-9

    Article  CAS  Google Scholar 

  22. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86. https://doi.org/10.1006/meth.2001.1217

    Article  CAS  PubMed  Google Scholar 

  23. Birch S, Rolinski OJ (2001) Fluorescence resonance energy transfer sensors. Res Chem Intermed 27:425–446. https://doi.org/10.1163/156856701104202084

    Article  CAS  Google Scholar 

  24. Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys 13:9929–9941. https://doi.org/10.1039/c0cp02967j

  25. Nakayama H, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003) Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng 84:96–102. https://doi.org/10.1002/bit.10755

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XF, Zhang J, Liu L (2014) Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra. J Fluoresc 24:819–826. https://doi.org/10.1007/s10895-014-1356-5

    Article  CAS  PubMed  Google Scholar 

  27. Shokoufi N, Abbasi-Ahd A, Madarshahian S (2018) Online monitoring of gold nanoparticles and induced aggregation by photothermal lens microscopy. Instrum Sci Technol 46:93–101. https://doi.org/10.1080/10739149.2017.1331358

    Article  CAS  Google Scholar 

  28. Hanžić N, Jurkin T, Maksimović A, Gotić M (2015) The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiat Phys Chem 106:77–82. https://doi.org/10.1016/j.radphyschem.2014.07.006

    Article  CAS  Google Scholar 

  29. Abbasi-Ahd A, Shokoufi N, Kargosha K (2017) Headspace single-drop microextraction coupled to microchip-photothermal lens microscopy for highly sensitive determination of captopril in human serum and pharmaceuticals. Microchim Acta 184:2403–2409

    Article  CAS  Google Scholar 

  30. Zhang F, Zeng L, Zhang Y, Wang H, Wu A (2011) A colorimetric assay method for co 2+ based on thioglycolic acid functionalized hexadecyl trimethyl ammonium bromide modified au nanoparticles (NPs). Nanoscale 3(5):2150–2154

    Article  CAS  Google Scholar 

  31. Shokoufi N, Abbasgholi Nejad Asbaghi B, Abbasi-Ahd A (2019) Microfluidic chip-photothermal lens microscopy for DNA hybridization assay using gold nanoparticles. Anal Bioanal Chem 411:6119–6128. https://doi.org/10.1007/s00216-019-01999-5

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Huang Y, Zhao S, Lu X, Tian J (2012) Gold nanoparticles-based fluorescence resonance energy transfer for competitive immunoassay of biomolecules. Analyst 137:5885–5890. https://doi.org/10.1039/c2an36108f

    Article  CAS  PubMed  Google Scholar 

  33. Chen C, Zhao D, Sun J, Yang X (2016) A dual-mode signaling response of a AuNP-fluorescein based probe for specific detection of thiourea. Analyst 141:2581–2587. https://doi.org/10.1039/c6an00165c

    Article  CAS  PubMed  Google Scholar 

  34. Shokoufi N, Vaziri Heshi S (2021) Enhancmentation of photo-thermal Lens of fluorescence molecules by fluorescence resonance energy transfer mechanism. J Fluoresc 31:587–593. https://doi.org/10.1007/s10895-020-02676-y

    Article  CAS  PubMed  Google Scholar 

  35. Lee DH, Sung HJ, Han DW, Lee MS, Ryu GH, Aihara M, Takatori K, Park JC (2005) In vitro bioassay of endotoxin using fluorescein as a pH indicator in a macrophage cell culture system. Yonsei Med J 46:268–274. https://doi.org/10.3349/ymj.2005.46.2.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamaguchi S, Shimada K, Matsui K (2020) Spectroscopic study of fluorescein immobilized on anodic porous alumina in aqueous solutions of different pH. Dyes Pigments 173:107944

    Article  CAS  Google Scholar 

  37. Hendrickson HP, Milesi-Hallé A, Laurenzana EM, Owens SM (2004) Development of a liquid chromatography-tandem mass spectrometric method for the determination of methamphetamine and amphetamine using small volumes of rat serum. J Chromatogr B Anal Technol Biomed Life Sci 806:81–87. https://doi.org/10.1016/j.jchromb.2004.03.038

    Article  CAS  Google Scholar 

  38. Djozan D, Farajzadeh MA, Sorouraddin SM, Baheri T (2012) Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination. Microchim Acta 179:209–217. https://doi.org/10.1007/s00604-012-0879-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Behnaz Abbasgholi Nejad Asbaghi for help in the preparation of The FESEM images of AuNPs.

Availability of data and material

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

Funding

The authors are grateful for the support of this investigation by the Research Council of Chemistry & Chemical Engineering Research Center of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Shokoufi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaziri Heshi, S., Shokoufi, N. Fluorescence resonance energy transfer-thermal lens spectrometry (FRET-TLS) as molecular counting of methamphetamine. Microchim Acta 188, 191 (2021). https://doi.org/10.1007/s00604-021-04842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04842-w

Keywords

Navigation