Skip to main content
Log in

A photoelectrochemical sensor based on Z-Scheme TiO2@Au@CdS and molecularly imprinted polymer for uric acid detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel photoelectrochemical (PEC) sensor based on “Z-scheme” TiO2@Au@CdS and molecularly imprinted polymer (MIP) was developed for the non-invasive detection of uric acid (UA). The “Z-scheme” material, consisting of an electron-transfer system (Au) and two isolated photochemical systems (CdS, TiO2), was synthesized by chemical deposition method and it worked as a substrate for electro-polymerization of MIP. Due to the high photoelectric conversion efficiency provided by TiO2@Au@CdS and specific imprinting effect afforded by MIP, the sensor displayed desirable sensing performance with the merits of sensitivity, selectivity, repeatability, and stability. The linear range for UA detection is from 1 nM to 9 μM with the detection limit of 0.3 nM (S/N = 3). Moreover, the assay was successfully utilized to measure UA in human tears and offered a reliable result. The incorporation of MIP and “Z-scheme” material into a PEC sensor system is expected to provide a promising strategy for detecting other small molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C-60-modified glassy carbon electrode. Electroanalysis 17(24):2217–2223. https://doi.org/10.1002/elan.200503353

    Article  CAS  Google Scholar 

  2. Arora K, Tomar M, Gupta V (2011) Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film. Biosens Bioelectron 30(1):333–336. https://doi.org/10.1016/j.bios.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  3. Jindal K, Tomar M, Gupta V (2014) Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor. Biosens Bioelectron 55:57–65. https://doi.org/10.1016/j.bios.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  4. da Silva ETSG, Souto DEP, Barragan JTC, Giarola J d F, de Moraes ACM, Kubota LT (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4(4):778–794. https://doi.org/10.1002/celc.201600758

    Article  CAS  Google Scholar 

  5. Choi S, Moon SW, Shin JH, Park HK, Jin KH (2014) Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids. Anal Chem 86(22):11093–11099. https://doi.org/10.1021/ac5025478

    Article  CAS  PubMed  Google Scholar 

  6. Gelstein S, Yeshurun Y, Rozenkrantz L, Shushan S, Frumin I, Roth Y, Sobel N (2011) Human tears contain a chemosignal. Science 331(6014):226–230. https://doi.org/10.1126/science.1198331

    Article  CAS  PubMed  Google Scholar 

  7. Bai X, Zhang Y, Gao W, Zhao D, Yang D, Jia N (2020) Hollow ZnS-CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline. Biosens Bioelectron 168:112522. https://doi.org/10.1016/j.bios.2020.112522

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Feng L, Li P, Chen X, Jiang J, Zhang S, Zhang C, Zhang A, Chen G, Wang H (2020) Direct Z-scheme photocatalyst of hollow CoSx@CdS polyhedron constructed by ZIF-67-templated one-pot solvothermal route: a signal-on photoelectrochemical sensor for mercury (II). Chem Eng J 395:125072. https://doi.org/10.1016/j.cej.2020.125072

    Article  CAS  Google Scholar 

  9. Li M, Wang H, Wang X, Lu Q, Li H, Zhang Y, Yao S (2019) Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosens Bioelectron 142:111535. https://doi.org/10.1016/j.bios.2019.111535

    Article  CAS  PubMed  Google Scholar 

  10. Han Q, Wang R, Xing B, Chi H, Wu D, Wei Q (2018) Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6. Biosens Bioelectron 106:7–13. https://doi.org/10.1016/j.bios.2018.01.051

    Article  CAS  PubMed  Google Scholar 

  11. Zhao WW, Xu JJ, Chen HY (2018) Photoelectrochemical immunoassays. Anal Chem 90(1):615–627. https://doi.org/10.1021/acs.analchem.7b04672

    Article  CAS  PubMed  Google Scholar 

  12. Gao B, Zhao X, Liang Z, Wu Z, Wang W, Han D, Niu L (2021) CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal Chem 93(2):820–827. https://doi.org/10.1021/acs.analchem.0c03315

    Article  CAS  PubMed  Google Scholar 

  13. Xu R, Du Y, Liu L, Fan D, Yan L, Liu X, Wang H, Wei Q, Ju H (2021) Molecular imprinted photoelectrochemical sensor for bisphenol A supported by flower-like AgBiS2/In2S3 matrix. Sensors Actuators B Chem 330:129387. https://doi.org/10.1016/j.snb.2020.129387

    Article  CAS  Google Scholar 

  14. Pei Y, Ge Y, Zhang X, Li Y (2021) Cathodic photoelectrochemical aptasensor based on NiO/BiOI/Au NP composite sensitized with CdSe for determination of exosomes. Mikrochim Acta 188(2):51. https://doi.org/10.1007/s00604-021-04716-1

    Article  CAS  PubMed  Google Scholar 

  15. Wang Q, Wu XQ, Zhang L (2019) Designed of bifunctional Z-scheme CuSnO3@Cu2O heterojunctions film for photoelectrochemical catalytic reduction and ultrasensitive sensing nitrobenzene. Chem Eng J 361:398–407. https://doi.org/10.1016/j.cej.2018.12.079

    Article  CAS  Google Scholar 

  16. Shu J, Tang D (2020) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem 92(1):363–377. https://doi.org/10.1021/acs.analchem.9b04199

    Article  CAS  PubMed  Google Scholar 

  17. Lv S, Zhang K, Zeng Y, Tang D (2018) Double photosystems-based ‘Z-Scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker. Anal Chem 90(11):7086–7093. https://doi.org/10.1021/acs.analchem.8b01825

    Article  CAS  PubMed  Google Scholar 

  18. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat Mater 5(10):782–786. https://doi.org/10.1038/nmat1734

    Article  CAS  PubMed  Google Scholar 

  19. Meng L, Liu M, Xiao K, Zhang X, Du C, Chen J (2020) Sensitive photoelectrochemical assay of Pb(2+) based on DNAzyme-induced disassembly of the “Z-scheme” TiO2/Au/CdS QDs system. Chem Commun (Camb) 56(59):8261–8264. https://doi.org/10.1039/d0cc03149f

    Article  CAS  Google Scholar 

  20. Yang R, Jiang G, Liu J, Wang Y, Jian N, He L, Liu L, Qu L, Wu Y (2021) Plasmonic TiO2@Au NPs//CdS QDs photocurrent-direction switching system for ultrasensitive and selective photoelectrochemical biosensing with cathodic background signal. Anal Chim Acta 1153:338283. https://doi.org/10.1016/j.aca.2021.338283

    Article  CAS  PubMed  Google Scholar 

  21. Sehit E, Drzazgowska J, Buchenau D, Yesildag C, Lensen M, Altintas Z (2020) Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosens Bioelectron 165:112432. https://doi.org/10.1016/j.bios.2020.112432

    Article  CAS  PubMed  Google Scholar 

  22. Zheng W, Zhao M, Liu W, Yu S, Niu L, Li G, Li H, Liu W (2018) Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine. J Electroanal Chem 813:75–82. https://doi.org/10.1016/j.jelechem.2018.02.022

    Article  CAS  Google Scholar 

  23. Liu J, Zhang Y, Jiang M, Tian L, Sun S, Zhao N, Zhao F, Li Y (2017) Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosens Bioelectron 91:714–720. https://doi.org/10.1016/j.bios.2017.01.037

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Liu C, Han K, Wei X, Xu Y, Zou X, Zhang H, Chen Z (2020) A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid. Biosens Bioelectron 154:112091. https://doi.org/10.1016/j.bios.2020.112091

    Article  CAS  PubMed  Google Scholar 

  25. Dashtian K, Hajati S, Ghaedi M (2020) L-phenylalanine-imprinted polydopamine-coated CdS/CdSe n-n type II heterojunction as an ultrasensitive photoelectrochemical biosensor for the PKU monitoring. Biosens Bioelectron 165. https://doi.org/10.1016/j.bios.2020.112346

  26. Li X, Zhong L, Liu R, Wei X, Li J (2019) A molecularly imprinted photoelectrochemical sensor based on the use of Bi2S3 for sensitive determination of dioctyl phthalate. Microchim Acta 186(11):688. https://doi.org/10.1007/s00604-019-3812-z

    Article  CAS  Google Scholar 

  27. Guo L, Li Z, Marcus K, Navarro S, Liang K, Zhou L, Mani PD, Florczyk SJ, Coffey KR, Orlovskaya N, Sohn YH, Yang Y (2017) Periodically patterned Au-TiO2 heterostructures for photoelectrochemical sensor. ACS Sens 2(5):621–625. https://doi.org/10.1021/acssensors.7b00251

    Article  CAS  PubMed  Google Scholar 

  28. Conzatti G, Ayadi F, Cavalie S, Carrère N, Tourrette A (2019) Thermosensitive PNIPAM grafted alginate/chitosan PEC. Appl Surf Sci 467-468:940–948. https://doi.org/10.1016/j.apsusc.2018.10.269

    Article  CAS  Google Scholar 

  29. Yan Y, Li H, Liu Q, Hao N, Mao H, Wang K (2017) A facile strategy to construct pure thiophene-sulfur-doped graphene/ZnO nanoplates sensitized structure for fabricating a novel “on-off-on” switch photoelectrochemical aptasensor. Sensors Actuators B Chem 251:99–107. https://doi.org/10.1016/j.snb.2017.05.034

    Article  CAS  Google Scholar 

  30. Tong R, Liu C, Xu Z, Kuang Q, Xie Z, Zheng L (2016) Efficiently enhancing visible light photocatalytic activity of faceted TiO2 nanocrystals by synergistic effects of core-shell structured Au@CdS nanoparticles and their selective deposition. ACS Appl Mater Interfaces 8(33):21326–21333. https://doi.org/10.1021/acsami.6b05563

    Article  CAS  PubMed  Google Scholar 

  31. Kandi D, Behera A, Martha S, Naik B, Parida KM (2019) Quantum confinement chemistry of CdS QDs plus hot electron of Au over TiO2 nanowire protruding to be encouraging photocatalyst towards nitrophenol conversion and ciprofloxacin degradation. J Environ Chem Eng 7(1):102821. https://doi.org/10.1016/j.jece.2018.102821

    Article  CAS  Google Scholar 

  32. Naya SI, Kume T, Akashi R, Fujishima M, Tada H (2018) Red-light-driven water splitting by Au(Core)-CdS(Shell) half-cut nanoegg with heteroepitaxial junction. J Am Chem Soc 140(4):1251–1254. https://doi.org/10.1021/jacs.7b12972

    Article  CAS  PubMed  Google Scholar 

  33. Lv J, Zhang Z, Wang J, Lu X, Zhang W, Lu T (2019) In situ synthesis of CdS/graphdiyne heterojunction for enhanced photocatalytic activity of hydrogen production. ACS Appl Mater Interfaces 11(3):2655–2661. https://doi.org/10.1021/acsami.8b03326

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Wang J, Wang X, Lin H, Li F (2019) Perylene-based photoactive material as a double-stranded DNA intercalating probe for ultrasensitive photoelectrochemical biosensing. ACS Appl Mater Interfaces 11(18):16958–16964. https://doi.org/10.1021/acsami.9b04299

    Article  CAS  PubMed  Google Scholar 

  35. Shahnazi A, Nabid MR, Sedghi R (2020) Synthesis of surface molecularly imprinted poly-o-phenylenediamine/TiO2/carbon nanodots with a highly enhanced selective photocatalytic degradation of pendimethalin herbicide under visible light. React Funct Polym 151:104580. https://doi.org/10.1016/j.reactfunctpolym.2020.104580

    Article  CAS  Google Scholar 

  36. Kong L, Wang C, Zheng H, Zhang X, Liu Y (2015) Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J Phys Chem C 119(29):16623–16632. https://doi.org/10.1021/acs.jpcc.5b03448

    Article  CAS  Google Scholar 

  37. Sun J, Sun L, Han N, Chu H, Bai S, Shu X, Luo R, Chen A (2019) rGO decorated CdS/CdO composite for detection of low concentration NO2. Sensors Actuators B Chem 299:126832. https://doi.org/10.1016/j.snb.2019.126832

    Article  CAS  Google Scholar 

  38. Bukhtiyarov AV, Prosvirin IP, Bukhtiyarov VI (2016) XPS/STM study of model bimetallic Pd–Au/HOPG catalysts. Appl Surf Sci 367:214–221. https://doi.org/10.1016/j.apsusc.2016.01.173

    Article  CAS  Google Scholar 

  39. Liu PP, Liu X, Huo XH, Tang Y, Xu J, Ju H (2017) TiO2–BiVO4 heterostructure to enhance photoelectrochemical efficiency for sensitive aptasensing. ACS Appl Mater Interfaces 9(32):27185–27192. https://doi.org/10.1021/acsami.7b07047

    Article  CAS  PubMed  Google Scholar 

  40. Cao C, Hu C, Shen W, Wang S, Tian Y, Wang X (2012) Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property. J Alloys Compd 523:139–145. https://doi.org/10.1016/j.jallcom.2012.01.126

    Article  CAS  Google Scholar 

  41. Sun X, Gao C, Zhang L, Yan M, Yu J, Ge S (2017) Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sensors Actuators B Chem 251:1–8. https://doi.org/10.1016/j.snb.2017.04.130

    Article  CAS  Google Scholar 

  42. Gao J, Huang W, Chen Z, Yi C, Jiang L (2019) Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors Actuators B Chem 287:102–110. https://doi.org/10.1016/j.snb.2019.02.020

    Article  CAS  Google Scholar 

  43. Jain S, Verma S, Singh SP, Sharma SN (2019) An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens Bioelectron 127:135–141. https://doi.org/10.1016/j.bios.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  44. Luo J, Cui J, Wang Y, Yu D, Qin Y, Zheng H, Shu X, Tan HH, Zhang Y, Wu Y (2020) Metal-organic framework-derived porous Cu2O/Cu@C core-shell nanowires and their application in uric acid biosensor. Appl Surf Sci 506:144662. https://doi.org/10.1016/j.apsusc.2019.144662

    Article  CAS  Google Scholar 

  45. Sen S, Sarkar P (2020) A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine. Anal Chim Acta 1114:15–28. https://doi.org/10.1016/j.aca.2020.03.060

    Article  CAS  PubMed  Google Scholar 

  46. Jiang M (2019) A lable-free ECL biosensor for the detection of uric acid based on Au NRs@TiO2 Nanocomposite. Int J Electrochem Sci:2333–2344. https://doi.org/10.20964/2019.03.48

  47. Lou F, Wang A, Jin J, Li Q, Zhang S (2018) One-pot synthesis of popcorn-like Au@Polyluminol nanoflowers for sensitive solid-state electrochemiluminescent sensor. Electrochim Acta 278:255–262. https://doi.org/10.1016/j.electacta.2018.04.194

    Article  CAS  Google Scholar 

  48. Zhao Y, Wei X, Peng N, Wang J, Jiang Z (2017) Study of ZnS nanostructures based electrochemical and photoelectrochemical biosensors for uric acid detection. Sensors 17(6). https://doi.org/10.3390/s17061235

Download references

Funding

The work was financially supported by Shenzhen Science and Technology Program (Grant Nos. KQTD20170810105439418, KQJSCX20180328165437711), National Natural Science Foundation of China (81973280, 81773680), Innovative team and talent training project of Shihezi (2018TD02) and the key technique improvement of Xinjiang Licorice planting and quality control of Xinjiang Production & Construction Corps (2018AB012), Natural Science Foundation of Hunan Province (2018JJ3523), Shenzhen Key Medical Discipline Construction Fund (Grant No. SZXK009), and Shenzhen Second People’s Hospital Clinical Research Program (Grant No. 20193357002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xu or Jiao Yang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

(DOCX 8692 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cheng, J., Sun, Y. et al. A photoelectrochemical sensor based on Z-Scheme TiO2@Au@CdS and molecularly imprinted polymer for uric acid detection. Microchim Acta 188, 188 (2021). https://doi.org/10.1007/s00604-021-04841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04841-x

Keywords

Navigation