Skip to main content
Log in

An electrochemical sensor based on SiO2@TiO2-embedded molecularly imprinted polymers for selective and sensitive determination of theophylline

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work is focused on a typical core-shell-structured SiO2@TiO2-based imprinted polymer composite, employed as a molecular recognition and sensing interface in the construction of an innovative electrochemical sensor. Herein, the methacrylic acid and a bronchodilator drug, theophylline, were used as functional monomer and template, respectively. The SiO2@TiO2 served as a potential signal transducer to shuttle electrons between the binding sites and the electrode. Such modification induced an electrocatalytic effect and thereby greatly improved the electrode kinetics. The analytical features of the developed theophylline sensor have been accessed, and the results have indicated that an increase of differential pulse voltammetric current as compared to the corresponding traditional imprinted polymer modified electrode. Moreover, the sensor has showed high sensitivity, wider linear range (0.01–40 μM), lower detection limit (1.2 nM), and satisfactory long-term stability, which was validated with the complex matrices of tea, human blood serum, and urine, without any matrix effect and cross-reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnes PJ (2013) Theophylline. Am J Respir Crit Care Med 188:901–906

    Article  CAS  Google Scholar 

  2. Cui F, Zhang XL (2013) A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline. J Solid State Electrochem 17(1):167–173

    Article  CAS  Google Scholar 

  3. Al–Jenoobi FI, Ahad A, Mahrous GM, Raish M, Alam MA, Al–Mohizea AM (2015) A simple HPLC–UV method for the quantification of theophylline in rabbit plasma and its pharmacokinetic application. J Chromatogr Sci 53(10):1765–1770

    Article  Google Scholar 

  4. Choi EJ, Bae SH, Park JB, Kwon MJ, Jang SM, Zheng YF, Lee YS, Lee SJ, Bae SK (2013) Simultaneous quantification of caffeine and its three primary metabolites in rat plasma by liquid chromatography–tandem mass spectrometry. Food Chem 141(3):2735–2742

    Article  CAS  Google Scholar 

  5. Park KS, Oh SS, Soh HT, Park HG (2014) Target-controlled formation of silver nanoclusters in a basic site-incorporated duplex DNA for label-free fluorescence detection of theophylline. Nano 6(17):9977–9982

    CAS  Google Scholar 

  6. Rang Y, Zeng HL, Nakajima H, Kato S, Uchiyama K (2015) Quantitative on-line concentration for capillary electrophoresis with inkjet sample introduction technique. J Sep Sci 38(15):2722–2728

    Article  CAS  Google Scholar 

  7. Katiyar N, Selvakumar LS, Patra S, Thakur MS (2013) Gold nanoparticles based colorimetric aptasensor for theophylline. Anal Methods 5(3):653–659

    Article  CAS  Google Scholar 

  8. Ling K, Jiang HY, Li Y, Tao XJ, Qiu C, Li FR (2016) A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosens Bioelectron 86:8–13

    Article  CAS  Google Scholar 

  9. Ferapontova EE, Shipovskov S, Gorton L (2007) Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes. Biosens Bioelectron 22(11):2508–2515

    Article  CAS  Google Scholar 

  10. Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron 91:606–615

    Article  CAS  Google Scholar 

  11. Gan T, Lv Z, Sun YY, Shi ZX, Sun JY, Zhao AX (2016) Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@SnS2-assisted signal amplification. J Appl Electrochem 46(3):389–401

    Article  CAS  Google Scholar 

  12. Yang SM, Zheng Y, Zhang XR, Ding SQ, Li LL, Zha WL (2016) Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine. J Solid State Electrochem 20(7):2037–2044

    Article  CAS  Google Scholar 

  13. Lan Z, Wu WX, Zhang S, Que LF, Wu JH (2016) An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J Solid State Electrochem 20(10):2643–2650

    Article  CAS  Google Scholar 

  14. Labiadh L, Barbucci A, Cerisola G, Gadri A, Ammar S, Panizza M (2015) Role of anode material on the electrochemical oxidation of methyl orange. J Solid State Electrochem 19(10):3177–3183

    Article  CAS  Google Scholar 

  15. Yao YW, Jiao LM, Yu NC, Guo F, Chen X (2016) Comparison of electrocatalytic characterization of Ti/Sb-SnO2 andTi/F-PbO2 electrodes. J Solid State Electrochem 20(2):353–359

    Article  CAS  Google Scholar 

  16. Ullah S, Ferreira-Neto EP, Pasa AA, Alcântara CCJ, JJS A, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues-Filho UP (2015) Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Appl Catal B–Environ 179:333–343

    Article  CAS  Google Scholar 

  17. Wu LH, Zhou YF, Nie WY, Song LY, Chen PP (2015) Synthesis of highly monodispersed teardrop-shaped core-shell SiO2/TiO2 nanoparticles and their photocatalytic activities. Appl Surf Sci 35:320–326

    Article  Google Scholar 

  18. Son S, Hwang SH, Kim C, Yun JY, Jang J (2013) Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Appl Mater Inter 5(11):4815–4820

    Article  CAS  Google Scholar 

  19. Li Y, Liu XY, Yuan HY, Xiao D (2009) Glucose biosensor based on the room−temperature phosphorescence of TiO2/SiO2 nanocomposite. Biosens Bioelectron 24(12):3706–3710

    Article  CAS  Google Scholar 

  20. Liu H, Lv T, Zhu ZF (2015) Template-assisted synthesis of hollow TiO2@rGO core–shell structural nanospheres with enhanced photocatalytic activity. J Mol Catal A–Chem 404:178–185

    Article  Google Scholar 

  21. He LM, Su YJ, Zheng YQ, Huang XH, Wu L, Liu YH, Zeng ZL, Chen ZL (2009) Novel cyromazine imprinted polymer applied to the solid-phase extraction of melamine from feed and milk samples. J Chromatogr A 1216(34):6196–6203

    Article  CAS  Google Scholar 

  22. Bazmandegan–Shamili A, Dadfarnia S, Shabani AMH, Saeidi M, Moghadam MR (2016) High-performance liquid chromatographic determination of diazinon after its magnetic dispersive solid-phase microextraction using magnetic molecularly imprinted polymer. Food Anal Method 9(9):2621–2630

    Article  Google Scholar 

  23. Guo YL, Wu PY (2008) FTIR spectroscopic study of the acrylamide states in AOT reversed micelles. J Mol Struct 883:31–37

    Article  Google Scholar 

  24. Aswini KK, Mohan AMV, Biju VM (2016) Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor. Mat Sci Eng C–Mater 65:116–125

    Article  CAS  Google Scholar 

  25. Bates F, del Valle M (2015) Voltammetric sensor for theophylline using sol-gel immobilized molecularly imprinted polymer particles. Microchim Acta 182(5−6):933–942

    Article  CAS  Google Scholar 

  26. Guney S, Cebeci FC (2015) Selective electrochemical sensor for theophylline based on an electrode modified with imprinted sol-gel film immobilized on carbon nanoparticle layer. Sensor Actuat B–Chem 208:307–314

    Article  CAS  Google Scholar 

  27. Zhao Z, Teng Y, Xu GL, Zhang TT, Kan XW (2013) Molecular imprinted polymer based thermo-sensitive electrochemical sensor for theophylline recognition. Anal Lett 46(14):2180–2188

    Article  CAS  Google Scholar 

  28. Tan XC, Wang L, Li PF, Gong Q, Liu L, Zhao DD, Lei FH, Huang ZY (2012) Electrochemical sensor for the determination of theophylline based on molecularly imprinted polymer with ethylene glycol maleic rosinate acrylate as cross-linker. Acta Chim Sin 70(9):1088–1094

    Article  CAS  Google Scholar 

  29. Wang ZH, Kang JW, Liu XY, Ma YJ (2007) Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer. Int J Polym Anal Ch 12(2):131–142

    Article  CAS  Google Scholar 

  30. Li L, Yang LL, Teng Y, Zhong M, Lu XJ, Kan XW (2014) Preparation and application of imprinted electrochemical sensor based on dopamine self-polymerization. J Electrochem Soc 161(14):B312–B316

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the National Science Foundation of China (No. 61201091), the Program for Science & Technology Innovation Talents in University of Henan Province (No. 16HASTIT004), the Key Scientific and Technological Project of Henan Province (No. 162102210126), the Key Scientific Research Projects in University of Henan Province (No. 18A150047), the Plan for Scientific Innovation Talent of Henan Province (No. 2017JR0016), the open fund of Henan Key Laboratory of Biomolecular Recognition and Sensing (No. HKLBRSK1602), the open fund of Key Laboratory of Analytical Chemistry for Biology and Medicine (ACBM2016005), and Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Gan or Yanming Liu.

Electronic supplementary material

ESM 1

(DOC 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, T., Zhao, A., Wang, Z. et al. An electrochemical sensor based on SiO2@TiO2-embedded molecularly imprinted polymers for selective and sensitive determination of theophylline. J Solid State Electrochem 21, 3683–3691 (2017). https://doi.org/10.1007/s10008-017-3713-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3713-1

Keywords

Navigation