Skip to main content

Advertisement

Log in

Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Noble metal nanostructures with designed hot spots have been widely investigated as surface-enhanced Raman spectroscopy (SERS)-active substrates, particularly for selective and sensitive detection of protein cancer markers. For specific target recognition and efficient signal amplification, SERS probe design requires a choice of SERS-active nanostructures as well as their controlled functionalization with Raman dyes and target recognition entities such as antibodies. However, the chemical conjugation of antibodies and Raman dyes to SERS substrates has rarely been discussed to date, despite their substantial roles in detection schemes. The interfacial interactions of metal nanostructures with functional ligands during conjugation are known to be strongly influenced by the various chemical and physical properties of the ligands, such as size, molecular weight, surface charge, 3-dimensional structures, and hydrophilicity/hydrophobicity. In this review, we discuss recent developments in the design of SERS probes over the last 4 years, focusing on their conjugation chemistry for functionalization. A strong preference for covalent bonding is observed with Raman dyes having simpler molecular structures, whereas more complicated ones are non-covalently adsorbed. Antibodies are both covalently and non-covalently bonded to nanostructures, depending on their activity in the SERS probes. Considering that ligand conjugation is highly important for chemical stability, biocompatibility, and functionality of SERS probes, this review is expected to expand the understanding of their interfacial design, leading to SERS as one of the most promising spectroscopic analytical tools for the early detection of protein cancer markers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

2-NAP:

2-Naphthalenethiol

4-ABP:

4-Aminobiphenyl

4-MB:

4-Mercaptobenzonitrile

4-MBA:

4-Mercaptobenzoic acid

4-NBT:

4-Nitrobenzenethiol

AAD:

Acetamide

AFP:

α-Fetoprotein

AgNSs:

Silver nanospheres

Au@Ag CGS NPs/Ag@Au CGS NP:

Gold-silver core-shell nanoparticles/silver-gold core-shell nanoparticles

AuAgNBs:

Gold-silver alloy nanoboxes

AuBWs:

Gold butterfly wings

AuNBPs:

Gold nanobipyramids

AuNPs:

Gold nanoparticles

AuNRs:

Gold nanorods

AuNS clusters, :

Gold nanosphere clusters

AuNSs:

Gold nanospheres

AuNSTs, GNS:

Gold nanostars

AuNW arrays:

Gold nanowire arrays

BPEI:

Branched polyethyleneimine

BSA:

Bovine serum albumin

CA19-9:

Carbohydrate antigen 19-9

CEA:

Carcinoembryonic antigen

CGS NPs:

Core-gap-shell nanoparticles

c-PSA:

Complexed-prostate-specific antigen

CRP:

C-reactive protein

CTA+ :

Cetyltrimethylammonium

DATT:

Diamino-1,3,5-triazine-2-thiol

DNA:

Deoxyribonucleic acid

DSP:

Dithiobis(succinimidyl propionate)

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

EF:

Enhancement factor

EGFR:

Epidermal growth factor receptor

ELISA:

Enzyme-linked immunosorbent assay

EM:

Electromagnetic

EpCAM:

Epithelial cell adhesion molecule

f-PSA:

Free-prostate-specific antigen

FRα:

Folate receptor alpha

GOs:

Graphene oxides

GPC1:

Glypican-1

HE4:

Human epididymis protein 4

HER2:

Human epidermal growth factor receptor 2

IgG:

Immunoglobulin G

IL-8:

Interleukin-8

LDR:

Linear dynamic range

LOD:

Limit of detection

LSPR:

Localized surface plasmon resonance

mER:

Membrane estrogen receptor

MIF:

Migration inhibitory factor

MMP7:

Matrix Metallopeptidase 7

MNs:

Magnetic beads

MPY:

4-Mercaptopyridine

MUC1:

Mucin-1

MUC4:

Mucin-4

MUC16:

Mucin-16

NBA:

Nile blue A

NC:

Nitrocellulose

NCL:

Nucleolin

NGOs:

Nanoscale graphene oxides

NHS:

N-hydroxysuccinimide

NIR:

Near-infrared

NPs:

Nanoparticles

NSs:

Nanospheres

NTP:

4-Nitrothiophenol

PCA-DFA:

Principal component and differential function analyses

PCBs:

Photonic crystal beads

PDA:

Polydopamine

PEG:

Polyethylene glycol

PMA:

1-Pyrenemethylamine

PS:

Polystyrene

PSA:

Prostate-specific antigen

PTT:

Photothermal therapy

REMI:

Raman-encoded molecular imaging

RhodG:

Rhodamine Green

RNA:

Ribonucleic acid

RSD:

Relative standard deviation

RV:

Recovery value

sEGFR:

Soluble epidermal growth factor receptor

SERS:

Surface-enhanced Raman spectroscopy

sPD-1:

Soluble programmed death 1

sPD-L1:

Soluble programmed death-ligand 1

TEM:

Transmission electron microscopy

uPAR:

Urokinase receptor

VEGF:

Vascular endothelial growth factor

VFAs:

Vertical flow assays

λmax :

Wavelength of maximum absorbance

References

  1. Borrebaeck CAK (2017) Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer 17(3):199–204. https://doi.org/10.1038/nrc.2016.153

    Article  CAS  PubMed  Google Scholar 

  2. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    Article  CAS  Google Scholar 

  3. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84(1):1–20

    Article  CAS  Google Scholar 

  4. Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37(5):1061–1073. https://doi.org/10.1039/b706023h

    Article  CAS  PubMed  Google Scholar 

  5. Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, de Abajo FJG, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Ka M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhofer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlucker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzan LM (2020) Present and future of surface-enhanced Raman scattering. ACS Nano 14(1):28–117. https://doi.org/10.1021/acsnano.9b04224

    Article  CAS  PubMed  Google Scholar 

  6. Guerrini L, Alvarez-Puebla RA (2019) Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis and monitoring. Cancers 11(6):748. https://doi.org/10.3390/Cancers11060748

    Article  CAS  PubMed Central  Google Scholar 

  7. Vendrell M, Maiti KK, Dhaliwal K, Chang YT (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31(4):249–257. https://doi.org/10.1016/j.tibtech.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  8. Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394(7):1719–1727. https://doi.org/10.1007/s00216-009-2702-3

    Article  CAS  PubMed  Google Scholar 

  9. Lane LA, Qian XM, Nie SM (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529. https://doi.org/10.1021/acs.chemrev.5b00265

    Article  CAS  PubMed  Google Scholar 

  10. Zheng YH, Soeriyadi AH, Rosa L, Ng SH, Bach U, Gooding JJ (2015) Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat Commun 6:8797. https://doi.org/10.1038/Ncomms9797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi HK, Park WH, Park CG, Shin HH, Lee KS, Kirn ZH (2016) Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J Am Chem Soc 138(13):4673–4684. https://doi.org/10.1021/jacs.6b01865

    Article  CAS  PubMed  Google Scholar 

  12. Laing S, Gracie K, Faulds K (2016) Multiplex in vitro detection using SERS. Chem Soc Rev 45(7):1901–1918. https://doi.org/10.1039/c5cs00644a

    Article  CAS  PubMed  Google Scholar 

  13. Zhang YY, Mi X, Tan XY, Xiang R (2019) Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy. Theranostics 9(2):491–525. https://doi.org/10.7150/thno.29875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Koo KM, Wang YL, Trau M (2019) Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications. Adv Sci 6(23):1900730. https://doi.org/10.1002/Advs.201900730

    Article  CAS  Google Scholar 

  15. Shan BB, Pu YH, Chen YF, Liao ML, Li M (2018) Novel SERS labels: rational design, functional integration and biomedical applications. Coord Chem Rev 371:11–37. https://doi.org/10.1016/j.ccr.2018.05.007

    Article  CAS  Google Scholar 

  16. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557. https://doi.org/10.1038/NMAT2442

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Lee JS (2020) Insights into characterization methods and biomedical applications of nanoparticle-protein corona. Materials 13(14):3093. https://doi.org/10.3390/Ma13143093

    Article  CAS  PubMed Central  Google Scholar 

  18. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111(1):321–335. https://doi.org/10.1021/Ja00183a049

    Article  CAS  Google Scholar 

  19. Sugita Y, Taninaka A, Yoshida S, Takeuchi O, Shigekawa H (2018) The effect of nitrogen lone-pair interaction on the conduction in a single-molecule junction with amine-Au bonding. Sci Rep 8:5222. https://doi.org/10.1038/S41598-018-22893-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rao X, Tatoulian M, Guyon C, Ognier S, Chu CL, Abou Hassan A (2019) A comparison study of functional groups (amine vs. thiol) for immobilizing AuNPs on zeolite surface. Nanomaterials-Basel 9(7). https://doi.org/10.3390/Nano9071034

  21. Faulk WP, Taylor GM (1971) Immunocolloid method for electron microscope. Immunochemistry 8(11):1081–1083. https://doi.org/10.1016/0019-2791(71)90496-4

    Article  CAS  PubMed  Google Scholar 

  22. Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD (2021) Probing the mechanism of antibody-triggered aggregation of gold nanoparticles. Langmuir 37(9):2993–3000. https://doi.org/10.1021/acs.langmuir.1c00100

    Article  CAS  PubMed  Google Scholar 

  23. Kim EY, Kumar D, Khang G, Lim DK (2015) Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 3(43):8433–8444. https://doi.org/10.1039/c5tb01292a

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Cushing SK, Zhang JM, Suri S, Evans R, Petros WP, Gibson LF, Ma DL, Liu YX, Wu NQ (2013) Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7(6):4967–4976. https://doi.org/10.1021/nn4018284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc (11):55–75. https://doi.org/10.1039/Df9511100055

  26. Lee JS (2014) Silver nanomaterials for the detection of chemical and biological targets. Nanotechnol Rev 3(5):499–513. https://doi.org/10.1515/ntrev-2014-0017

    Article  CAS  Google Scholar 

  27. Zhang CM, Gao YK, Yang N, You TT, Chen HX, Yin PG (2018) Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta 185(2):90. https://doi.org/10.1007/s00604-017-2652-y

    Article  CAS  Google Scholar 

  28. Gao YF, Feng YH, Zhou L, Petti L, Wang Z, Zhou J, Xie SS, Chen J, Qing YP (2018) Ultrasensitive SERS-based immunoassay of tumor marker in serum using au-Ag alloy nanoparticles and Ag/AgBr hybrid nanostructure. Nano 13(1):1850001. https://doi.org/10.1142/S1793292018500017

    Article  CAS  Google Scholar 

  29. Tang BC, Wang JJ, Hutchison JA, Ma L, Zhang N, Guo H, Hu ZB, Li M, Zhao YL (2016) Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media. ACS Nano 10(1):871–879. https://doi.org/10.1021/acsnano.5b06007

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Reder NP, Kang S, Glaser AK, Yang Q, Wall MA, Javid SH, Dintzis SM, Liu JTC (2017) Raman-encoded molecular imaging with topically applied SERS nanoparticles for intraoperative guidance of lumpectomy. Cancer Res 77(16):4506–4516. https://doi.org/10.1158/0008-5472.CAN-17-0709

    Article  CAS  PubMed  Google Scholar 

  31. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen LX, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11(5):4926–4933. https://doi.org/10.1021/acsnano.7b01536

    Article  CAS  PubMed  Google Scholar 

  32. Banaei N, Foley A, Houghton JM, Sun YB, Kim B (2017) Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay. Nanotechnology 28(45):455101. https://doi.org/10.1088/1361-6528/Aa8e8c

    Article  PubMed  Google Scholar 

  33. Reza KK, Wang J, Vaidyanathan R, Dey S, Wang YL, Trau M (2017) Electrohydrodynamic-induced SERS immunoassay for extensive multiplexed biomarker sensing. Small 13(9):1602902. https://doi.org/10.1002/Smll.201602902

    Article  Google Scholar 

  34. Sun D, Cao FH, Xu WQ, Chen QD, Shi W, Xu SP (2019) Ultrasensitive and simultaneous detection of two cytokines secreted by single cell in microfluidic droplets via magnetic-field amplified SERS. Anal Chem 91(3):2551–2558. https://doi.org/10.1021/acs.analchem.8b05892

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZY, Zong SF, Wu L, Zhu D, Cui YP (2017) SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev 117(12):7910–7963. https://doi.org/10.1021/acs.chemrev.7b00027

    Article  CAS  PubMed  Google Scholar 

  36. Hanif S, Liu HL, Ahmed SA, Yang JM, Zhou Y, Pang J, Ji LN, Xia XH, Wang K (2017) Nanopipette-based SERS aptasensor for subcellular localization of cancer biomarker in single cells. Anal Chem 89(18):9911–9917. https://doi.org/10.1021/acs.analchem.7b02147

    Article  CAS  PubMed  Google Scholar 

  37. Lee JS, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7(7):2112–2115. https://doi.org/10.1021/nl071108g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lussier F, Thibault V, Charron B, Wallace GQ, Masson JF (2020) Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. Trac-Trend Anal Chem 124:115796. https://doi.org/10.1016/J.Trac.2019.115796

    Article  CAS  Google Scholar 

  39. Carmicheal J, Hayashi C, Huang X, Liu L, Lu Y, Krasnoslobodtsev A, Lushnikov A, Kshirsagar PG, Patel A, Jain M, Lyubchenko YL, Lu YF, Batra SK, Kaur S (2019) Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer. Nanomed-Nanotechnol 16:88–96. https://doi.org/10.1016/j.nano.2018.11.008

    Article  CAS  Google Scholar 

  40. Banaei N, Moshfegh J, Mohseni-Kabir A, Houghton JM, Sun YB, Kim B (2019) Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips. RSC Adv 9(4):1859–1868. https://doi.org/10.1039/c8ra08930b

    Article  CAS  Google Scholar 

  41. Reguera J, Langer J, de Aberasturi DJ, Liz-Marzan LM (2017) Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46(13):3866–3885. https://doi.org/10.1039/c7cs00158d

    Article  CAS  PubMed  Google Scholar 

  42. Pozzi EK, Goubert G, Chiang NH, Jiang N, Chapman CT, McAnally MO, Henry AI, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2017) Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem Rev 117(7):4961–4982. https://doi.org/10.1021/acs.chemrev.6b00343

    Article  CAS  PubMed  Google Scholar 

  43. Smitha SL, Gopchandran KG, Smijesh N, Philip R (2013) Size-dependent optical properties of Au nanorods. Prog Nat Sci-Mater 23(1):36–43. https://doi.org/10.1016/j.pnsc.2013.01.005

    Article  Google Scholar 

  44. Bastus NG, Merkoci F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846. https://doi.org/10.1021/cm500316k

    Article  CAS  Google Scholar 

  45. Qi Y, Zhang T, Jing CY, Liu SJ, Zhang CD, Alvarez PJJ, Chen W (2020) Nanocrystal facet modulation to enhance transferrin binding and cellular delivery. Nat Commun 11(1):1262. https://doi.org/10.1038/S41467-020-14972-Z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoft RC, Ford MJ, McDonagh AM, Cortie MB (2007) Adsorption of amine compounds on the Au(111) surface: a density functional study. J Phys Chem C 111(37):13886–13891. https://doi.org/10.1021/jp072494t

    Article  CAS  Google Scholar 

  47. Dey P, Baumann V, Rodriguez-Fernandez J (2020) Gold nanorod assemblies: the roles of hot-spot positioning and anisotropy in plasmon coupling and SERS. Nanomaterials-Basel 10(5). https://doi.org/10.3390/Nano10050942

  48. Kwizera EA, O’Connor R, Vinduska V, Williams M, Butch ER, Snyder SE, Chen X, Huang XH (2018) Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8(10):2722–2738. https://doi.org/10.7150/thno.21358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189. https://doi.org/10.1038/nature13118

    Article  CAS  PubMed  Google Scholar 

  50. Xiong QR, Lim CY, Ren JH, Zhou JJ, Pu KY, Chan-Park MB, Mao H, Lam YC, Duan HW (2018) Magnetic nanochain integrated microfluidic biochips. Nat Commun 2018(9):1743. https://doi.org/10.1038/S41467-018-04172-1

    Article  Google Scholar 

  51. Li M, Kang JW, Sukumar S, Dasari RR, Barman I (2015) Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem Sci 6(7):3906–3914. https://doi.org/10.1039/c5sc01054c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li M, Banerjee SR, Zheng C, Pomper MG, Barman I (2016) Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer. Chem Sci 7(11):6779–6785. https://doi.org/10.1039/c6sc01739h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li M, Paidi SK, Sakowski E, Preheim S, Barman I (2019) Ultrasensitive detection of hepatotoxic microcystin production from cyanobacteria using surface-enhanced Raman scattering immunosensor. Acs Sensors 4(5):1203–1210. https://doi.org/10.1021/acssensors.8b01453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li LH, Liao ML, Chen YF, Shan BB, Li M (2019) Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells. J Mater Chem B 7(5):815–822. https://doi.org/10.1039/c8tb02828a

    Article  CAS  PubMed  Google Scholar 

  55. Wang L, Sun YJ, Li Z (2015) Dependence of Raman intensity on the surface coverage of silver nanocubes in SERS active monolayers. Appl Surf Sci 325:242–250. https://doi.org/10.1016/j.apsusc.2014.11.071

    Article  CAS  Google Scholar 

  56. Carnovale C, Bryant G, Shukla R, Bansal V (2018) Impact of nanogold morphology on interactions with human serum. Phys Chem Chem Phys 20(46):29558–29565. https://doi.org/10.1039/c8cp05938a

    Article  CAS  PubMed  Google Scholar 

  57. Li JR, Wang J, Grewal YS, Howard CB, Raftery LJ, Mahler S, Wang YL, Trau M (2018) Multiplexed SERS detection of soluble cancer protein biomarkers with gold-silver alloy nanoboxes and nanoyeast single-chain variable fragments. Anal Chem 90(17):10377–10384. https://doi.org/10.1021/acs.analchem.8b02216

    Article  CAS  PubMed  Google Scholar 

  58. Ryu H-J, Shin H, Oh S, Joo JH, Choi Y, Lee J-S (2020) Wrapping AgCl nanostructures with trimetallic nanomeshes for plasmon-enhanced catalysis and in situ SERS monitoring of chemical reactions. ACS Appl Mater Interfaces 12(2):2842–2853. https://doi.org/10.1021/acsami.9b18364

    Article  CAS  PubMed  Google Scholar 

  59. Liu YJ, Bhattarai P, Dai ZF, Chen XY (2019) Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48(7):2053–2108. https://doi.org/10.1039/c8cs00618k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rao WY, Li Q, Wang YZ, Li T, Wu LJ (2015) Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods. ACS Nano 9(3):2783–2791. https://doi.org/10.1021/nn506689b

    Article  CAS  PubMed  Google Scholar 

  61. Chateau D, Liotta A, Vadcard F, Navarro JRG, Chaput F, Lerme J, Lerouge F, Parola S (2015) From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects. Nanoscale 7(5):1934–1943. https://doi.org/10.1039/c4nr06323f

    Article  CAS  PubMed  Google Scholar 

  62. Feng J, Chen LM, Xia YZ, Xing J, Li ZH, Qian QP, Wang Y, Wu AG, Zeng LY, Zhou YL (2017) Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. Acs Biomater Sci Eng 3(4):608–618. https://doi.org/10.1021/acsbiomaterials.7b00021

    Article  CAS  PubMed  Google Scholar 

  63. Stettner J, Winkler A (2010) Characterization of alkanethiol self-assembled monolayers on gold by thermal desorption spectroscopy. Langmuir 26(12):9659–9665. https://doi.org/10.1021/la100245a

    Article  CAS  PubMed  Google Scholar 

  64. Luo SC, Sivashanmugan K, Liao JD, Yao CK, Peng HC (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. https://doi.org/10.1016/j.bios.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  65. Jiang T, Wang XL, Zhou J, Jin H (2018) The construction of silver aggregate with inbuilt Raman molecule and gold nanowire forest in SERS-based immunoassay for cancer biomarker detection. Sens Actuator B-Chem 258:105–114. https://doi.org/10.1016/j.snb.2017.11.084

    Article  CAS  Google Scholar 

  66. Song GF, Zhou H, Gu JJ, Liu QL, Zhang W, Su HL, Su YS, Yao QH, Zhang D (2017) Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings. J Mater Chem B 5(8):1594–1600. https://doi.org/10.1039/c6tb03026b

    Article  CAS  PubMed  Google Scholar 

  67. Nam JM, Oh JW, Lee H, Suh YD (2016) Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc Chem Res 49(12):2746–2755. https://doi.org/10.1021/acs.accounts.6b00409

    Article  CAS  PubMed  Google Scholar 

  68. Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910. https://doi.org/10.1021/ja104174m

    Article  CAS  PubMed  Google Scholar 

  69. Tian Y, Wang T, Liu WY, Xin HL, Li HL, Ke YG, Shih WM, Gang O (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat Nanotechnol 10(7):637–644. https://doi.org/10.1038/Nnano.2015.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim JY, Lee JS (2009) Synthesis and thermally reversible assembly of DNA-gold nanoparticle cluster conjugates. Nano Lett 9(12):4564–4569. https://doi.org/10.1021/nl9030709

    Article  CAS  PubMed  Google Scholar 

  71. Saha A, Palmal S, Jana NR (2012) Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal. Nanoscale 4(20):6649–6657. https://doi.org/10.1039/c2nr31035j

    Article  CAS  PubMed  Google Scholar 

  72. Ali A, Hwang EY, Choo J, Lim DW (2018) Nanoscale graphene oxide-induced metallic nanoparticle clustering for surface-enhanced Raman scattering-based IgG detection. Sens Actuator B-Chem 255:183–192. https://doi.org/10.1016/j.snb.2017.07.140

    Article  CAS  Google Scholar 

  73. Wang Z, Yang HQ, Wang MH, Petti L, Jiang T, Jia ZH, Xie SS, Zhou J (2018) SERS-based multiplex immunoassay of tumor markers using double SiO2@Ag immune probes and gold-film hemisphere array immune substrate. Colloid Surface A 546:48–58. https://doi.org/10.1016/j.colsurfa.2018.02.069

    Article  CAS  Google Scholar 

  74. Xie W, Walkenfort B, Schlucker S (2013) Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J Am Chem Soc 135(5):1657–1660. https://doi.org/10.1021/ja309074a

    Article  CAS  PubMed  Google Scholar 

  75. Zhao J, Long L, Weng GJ, Li JJ, Zhu J, Zhao JW (2017) Multi-branch Au/Ag bimetallic core-shell-satellite nanoparticles as a versatile SERS substrate: the effect of Au branches in a mesoporous silica interlayer. J Mater Chem C 5(48):12678–12687. https://doi.org/10.1039/c7tc03788k

    Article  CAS  Google Scholar 

  76. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW (2019) Growth of spherical gold satellites on the surface of Au@Ag@SiO2 core shell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein. ACS Appl Mater Interfaces 11(3):3617–3626. https://doi.org/10.1021/acsami.8b21238

    Article  CAS  PubMed  Google Scholar 

  77. Welch NG, Scoble JA, Muir BW, Pigram PJ (2017) Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 12(2):02D301. https://doi.org/10.1116/1.4978435

    Article  CAS  PubMed  Google Scholar 

  78. Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117(7):5002–5069. https://doi.org/10.1021/acs.chemrev.6b00596

    Article  CAS  PubMed  Google Scholar 

  79. Li TD, Zhang R, Chen H, Huang ZP, Ye X, Wang H, Deng AM, Kong JL (2018) An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem Sci 9(24):5372–5382. https://doi.org/10.1039/c8sc01611a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu B, Ni HB, Zhang D, Wang DL, Fu DG, Chen HY, Gu ZZ, Zhao XW (2017) Ultrasensitive detection of protein with wide linear dynamic range based on core-shell SERS nanotags and photonic crystal beads. Acs Sensors 2(7):1035–1043. https://doi.org/10.1021/acssensors.7b00310

    Article  CAS  PubMed  Google Scholar 

  81. Huang YQ, Lin DJ, Li MT, Yin DW, Wang S, Wang JC (2019) Ag@Au core-shell porous nanocages with outstanding SERS activity for highly sensitive SERS immunoassay. Sensors 19(7):1554. https://doi.org/10.3390/S19071554

    Article  CAS  Google Scholar 

  82. Mercadal PA, Encina ER, Coronado EA (2019) Colloidal SERS substrate for the ultrasensitive detection of biotinylated antibodies based on near-field gradient within the gap of Au nanoparticle dimers. J Phys Chem C 123(38):23577–23585. https://doi.org/10.1021/acs.jpcc.9b02974

    Article  CAS  Google Scholar 

  83. Tian YR, Liu HM, Chen Y, Zhou CL, Jiang Y, Gu CJ, Jiang T, Zhou J (2019) Seedless one-spot synthesis of 3D and 2D Ag nanoflowers for multiple phase SERS-based molecule detection. Sens Actuator B-Chem 301:127142. https://doi.org/10.1016/J.Snb.2019.127142

    Article  CAS  Google Scholar 

  84. Jiang T, Chen G, Tian XL, Tang SW, Zhou J, Feng YH, Chen HY (2018) Construction of long narrow gaps in Ag nanoplates. J Am Chem Soc 140(46):15560–15563. https://doi.org/10.1021/jacs.8b06969

    Article  CAS  PubMed  Google Scholar 

  85. Chen RP, Liu B, Ni HB, Chang N, Luan CX, Ge QY, Dong J, Zhao XW (2019) Vertical flow assays based on core-shell SERS nanotags for multiplex prostate cancer biomarker detection. Analyst 144(13):4051–4059. https://doi.org/10.1039/c9an00733d

    Article  CAS  PubMed  Google Scholar 

  86. Gao XF, Boryczka J, Kasani S, Wu NQ (2021) Enabling direct protein detection in a drop of whole blood with an “on-strip” plasma separation unit in a paper-based lateral flow strip. Anal Chem 93(3):1326–1332. https://doi.org/10.1021/acs.analchem.0c02555

    Article  CAS  PubMed  Google Scholar 

  87. Wilson RE, O’Connor R, Gallops CE, Kwizera EA, Noroozi B, Morshed BI, Wang YM, Huang XH (2020) Immunomagnetic capture and multiplexed surface marker detection of circulating tumor cells with magnetic multicolor surface-enhanced Raman scattering nanotags. ACS Appl Mater Interfaces 12(42):47220–47232. https://doi.org/10.1021/acsami.0c12395

    Article  CAS  PubMed  Google Scholar 

  88. Bhattacharjee G, Bhattacharya M, Roy A, Senapati D, Satpati B (2018) Core-Shell gold@silver nanorods of varying length for high surface-enhanced Raman scattering enhancement. Acs Appl Nano Mater 1(10):5589–5600. https://doi.org/10.1021/acsanm.8b01175

    Article  CAS  Google Scholar 

  89. Duffy MJ (2013) Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract 22(1):4–11. https://doi.org/10.1159/000338393

    Article  PubMed  Google Scholar 

  90. Febbo PG, Ladanyi M, Aldape KD, De Marzo AM, Hammond ME, Hayes DF, Iafrate AJ, Kelley RK, Marcucci G, Ogino S, Pao W, Sgroi DC, Birkeland ML (2011) NCCN task force report: evaluating the clinical utility of tumor markers in oncology. J Natl Compr Canc Ne 9:S1–S32. https://doi.org/10.6004/jnccn.2011.0137

    Article  CAS  Google Scholar 

  91. Perkins GL, Slater ED, Sanders GK, Prichard JG (2003) Serum tumor markers. American family physician 68 (6):1075-1082. doi:aafp.org/afp/2003/0915/p1075

  92. Yamamoto DS, Viale PH, Roesser K, Lin A (2005) The clinical use of tumor markers in select cancers: are you confident enough to discuss them with your patients? Oncol Nurs Forum 32(5):1013–1022. https://doi.org/10.1188/05.Onf.1013-1025

    Article  Google Scholar 

  93. Sturgeon CM, Lai LC, Duffy MJ (2009) Serum tumour markers: how to order and interpret them (vol 339, pg b3527, 2009). Brit Med J 339. doi:https://doi.org/10.1136/Bmj.B4079

  94. Vaidyanathan K, Vasudevan D (2012) Organ specific tumor markers: what’s new? Indian J Clin Biochem 27(2):110–120. https://doi.org/10.1007/s12291-011-0173-8

    Article  CAS  PubMed  Google Scholar 

  95. Sier CFM, Stephens R, Bizik J, Mariani A, Bassan M, Pedersen N, Frigerio L, Ferrari A, Dano K, Brunner N, Blasi F (1998) The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res 58(9):1843–1849

    CAS  PubMed  Google Scholar 

  96. Lipton A, Leitzel K, Ali SM, Carney W, Platek G, Steplewski K, Westlund R, Gagnon R, Martin AM, Maltzman J (2011) Human epidermal growth factor receptor 2 (HER2) extracellular domain levels are associated with progression-free survival in patients with HER2-positive metastatic breast cancer receiving lapatinib monotherapy. Cancer 117(21):5013–5020. https://doi.org/10.1002/cncr.26101

    Article  CAS  PubMed  Google Scholar 

  97. Gasiorowska E, Kluz T, Lipski D, Warchol W, Tykarski A, Nowak-Markwitz E (2019) Human epididymis protein 4 (HE4) reference limits in polish population of healthy women, pregnant women, and women with benign ovarian tumors. Dis Markers 2019:1–7. https://doi.org/10.1155/2019/3890906

    Article  CAS  Google Scholar 

  98. Li CL, Li CW, Zhi CC, Liang WJ, Wang X, Chen X, Lv TF, Shen Q, Song Y, Lin D, Liu HB (2019) Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med 17(1):355. https://doi.org/10.1186/S12967-019-2101-2

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lee HW, Cho KJ, Shin SY, Kim HY, Lee EJ, Kim BK, Kim SU, Park JY, Ahn SH, Han K-H (2019) Serum PD-1 levels change with immunotherapy response but do not predict prognosis in patients with hepatocellular carcinoma. J Liver Cancer 19(2):108–116. https://doi.org/10.17998/jlc.19.2.108

    Article  Google Scholar 

  100. Iseki K, Tozawa M, Yoshi S, Fukiyama K (1999) Serum C-reactive protein (CRP) and risk of death in chronic dialysis patients. Nephrol Dial Transplant 14(8):1956–1960. https://doi.org/10.1093/ndt/14.8.1956

    Article  CAS  PubMed  Google Scholar 

  101. Roger T, Schlapbach LJ, Schneider A, Weier M, Wellmann S, Marquis P, Vermijlen D, Sweep FCGJ, Leng L, Bucala R, Calandra T, Giannoni E (2017) Plasma levels of macrophage migration inhibitory factor and D-dopachrome tautomerase show a highly specific profile in early life. Front Immunol 8. https://doi.org/10.3389/Fimmu.2017.00026

  102. Caruana D, Wei W, Martinez-Morilla S, Rimm DL, Reisenbichler ES (2020) Association between low estrogen receptor positive breast cancer and staining performance. Npj Breast Cancer 6(1):5. https://doi.org/10.1038/S41523-020-0146-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lundmark A, Johannsen G, Eriksson K, Kats A, Jansson L, Tervahartiala T, Rathnayake N, Akerman S, Klinge B, Sorsa T, Yucel-Lindberg T (2017) Mucin 4 and matrix metalloproteinase 7 as novel salivary biomarkers for periodontitis. J Clin Periodontol 44(3):247–254. https://doi.org/10.1111/jcpe.12670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kut C, Mac Gabhann F, Popel AS (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Brit J Cancer 97(7):978–985. https://doi.org/10.1038/sj.bjc.6603923

    Article  CAS  PubMed  Google Scholar 

  105. Tamkovich SN, Yunusova NV, Somov AK, Afanas'ev SG, Kakurina GV, Kolegova ES, Tugutova EA, Laktionov PP, Kondakova IV (2018) Comparative subpopulation analysis of plasma exosomes from cancer patients. Biochem Mosc-Suppl S 12(2):151–155. https://doi.org/10.1134/S1990750818020130

    Article  Google Scholar 

  106. Zhou J, Cheng K, Chen X, Yang R, Lu MD, Ming L, Chen Y, Lin ZY, Chen DZ (2020) Determination of soluble CD44 in serum by using a label-free aptamer based electrochemical impedance biosensor. Analyst 145(2):460–465. https://doi.org/10.1039/c9an01764j

    Article  CAS  PubMed  Google Scholar 

  107. Zhang J, Bai C (2017) Elevated serum interleukin-8 level as a preferable biomarker for identifying uncontrolled asthma and glucocorticosteroid responsiveness. Tanaffos 16(4):260–269

    PubMed  PubMed Central  Google Scholar 

  108. Hassan R, Ho M (2008) Mesothelin targeted cancer immunotherapy. Eur J Cancer 44(1):46–53. https://doi.org/10.1016/j.ejca.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  109. Hassan R, Remaley AT, Sampson ML, Zhang JL, Cox DD, Pingpank J, Alexander R, Willingham M, Pastan I, Onda M (2006) Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res 12(2):447–453. https://doi.org/10.1158/1078-0432.CCR-05-1477

    Article  CAS  PubMed  Google Scholar 

  110. Bedkowska GE, Gacuta E, Zajkowska M, Glazewska EK, Osada J, Szmitkowski M, Chrostek L, Dabrowska M, Lawicki S (2017) Plasma levels of MMP-7 and TIMP-1 in laboratory diagnostics and differentiation of selected histological types of epithelial ovarian cancers. J Ovarian Res 10. doi:https://doi.org/10.1186/s13048-017-0338-z

  111. Wang YM, Qi X, Gong FC, Chen Y, Yang ZT, Mao EQ, Chen EZ (2020) Protective and predictive role of Mucin1 in sepsis-induced ALI/ARDS. Int Immunopharmacol 83. doi:https://doi.org/10.1016/J.Intimp.2020.106438

  112. Hou YC, Wang CJ, Chao YJ, Chen HY, Wang HC, Tung HL, Lin JT, Shan YS (2018) Elevated serum interleukin-8 level correlates with cancer-related cachexia and sarcopenia: an indicator for pancreatic cancer outcomes. J Clin Med 7(12). https://doi.org/10.3390/Jcm7120502

Download references

Funding

This research was supported by BK21 FOUR Program and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (4199990514635 and NRF-2020R1A6A3A13075896), and by the NRF grant funded by the Ministry of Science and ICT (NRF-2016R1A5A1010148, NRF-2018R1A1A1A05079384, and NRF-2021R1A2C1012917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seung Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, HJ., Lee, W.K., Kim, Y.H. et al. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Microchim Acta 188, 164 (2021). https://doi.org/10.1007/s00604-021-04807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04807-z

Keywords

Navigation