Skip to main content
Log in

Functionalized graphene oxide in situ initiated ring-opening polymerization for highly sensitive sensing of cytokeratin-19 fragment

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Improving the sensitivity of detection is crucial to monitor biomarker, assess toxicity, and track therapeutic agent. Herein, a sensitivity-improved immunosensor is reported for the first time via functionalized graphene oxide (GO) and a “grafting-to” ring-opening polymerization (ROP) dual signal amplification strategy. Through the ROP reaction using 2-[(4-ferrocenylbutoxy)methyl] oxirane (FcEpo) as the monomer, lots of electroactive tags are linked in situ from multiple initiation sites on the GO surface modified with ethanol amine (GO-ETA), thereby achieving high sensitivity even in the case of trace amounts of tumor markers. The utmost important factor for achieving this high sensitivity is to select functionalized GO as the initiator that contains a large number of repeated hydroxyl functional groups so as to trigger additional ROP reaction. Under the optimal conditions, the high sensitivity and applicability is demonstrated by the use of GO-ETA-mediated ROP-based immunosensor to detect non-small cell lung cancer (NSCLC)–specific biomarker down to 72.58 ag/mL (equivalent to ~6 molecules in a 5 μL sample). Furthermore, the satisfactory results for the determination of biomarkers in clinical serum samples highlighted that this immunosensor holds a huge potential in practical clinical application.

Graphical abstract

This work described an electrochemical immunosensor for ultrasensitive detection of CYFRA 21-1 via the functionalized graphene oxide (GO) and a “grafting-to” ring-opening polymerization (ROP) dual signal amplification strategy, which hold the merits of high sensitivity, applicability, selectivity, efficiency, easy operation and environmental friendliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander V, Andrej B, Milos M, Abdel HH, Saleh A, Jan K (2019) The involvement of the phosphorylatable and nonphosphorylatable transcription factor CREB-1 in the control of human ovarian cell functions. Comptes Rendus Biologies 342:90–96

    Article  Google Scholar 

  2. Sun T, Zhang Y, Zhao F, Xia N, Liu L (2020) Self-assembled biotin-phenylalanine nanoparticles for the signal amplification of surface plasmon resonance biosensors. Microchim Acta 187:8

    Article  Google Scholar 

  3. Qin D, Jiang X, Mo G, Zheng X, Deng B (2020) Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Microchim Acta 187:8

    Article  Google Scholar 

  4. Halvorsen EH, Pollmann S, Gilboe IM, van der Heijde D, Landewé R, Ødegard S, Kvien TK, Molberg Ø (2008) Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann Rheum Dis 67:414–417

    Article  CAS  Google Scholar 

  5. Jeon S, Moon JM, Lee ES, Kim YH, Cho Y (2014) An electroactive biotin-doped polypyrrole substrate that immobilizes and releases EpCAM-positive cancer cells. Angew Chem Int Ed Eng 53:4597–4602

    Article  CAS  Google Scholar 

  6. Zhao YD, Bertolazzi S, Maglione MS, Rovira C, Mas-Torrent M, Samorì P (2020) Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv Mater Weinheim 32:e2000740

    Article  Google Scholar 

  7. Zhang LL, Abdullah R, Hu XX, Bai HR, Fan HH, He L, LiangH ZJM, Liu YL, Sun Y, Zhang XB, Tan WH (2014) Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base. J Am Chem Soc 141:4282–4290

    Article  Google Scholar 

  8. Albada B, Metzler-Nolte N (2017) Highly potent antibacterial organometallic peptide conjugates. Acc Chem Res 50:2510–2518

    Article  CAS  Google Scholar 

  9. Bao HM, Zhang HW, Zhang P, Fu H, Zhou L, Li Y, Cai WP (2020) Conduct ometric response-triggered surface-enhanced Raman spectroscopy for accurate gas recognition and monitoring based on oxide-wrapped metal nanoparticles. ACS Sensors 5:1641–1649

    Article  CAS  Google Scholar 

  10. Fu LH, Hu YR, Qi C, He T, Jiang SS, Jiang C, He J, Qu JL, Lin J, Huang P (2019) Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 13:13985–13994

    Article  CAS  Google Scholar 

  11. Tanwar AS, Adil LR, Afroz MA, Iyer PK (2018) Inner filter effect and resonance energy transfer based attogram level detection of nitroexplosive-picric acid using dual emitting cationic conjugated polyfluorene. ACS Sensors 3:1451–1461

    Article  CAS  Google Scholar 

  12. Zhang KH, Zhang MM, Feng XL, Hempenius MA, Vancso GJ (2017) Smart windows: switching light transmittance by responsive organometallic poly(ionic liquid)s: control by cross talk of thermal and redox stimuli. Adv Funct Mater 27:17027841–170278488

    Google Scholar 

  13. Hudson ZM, Manners I (2014) Assembly and disassembly of ferrocene-based nanotubes. Science 344:481–482

    Article  Google Scholar 

  14. Fujimura K, Ouchi M, Sawamoto M (2019) Ferrocene cocatalysis for iron-catalyzed living radical polymerization: active, robust, and sustainable system under concerted catalysis by two iron complexes. Polym Chem 6:7821–7826

    Article  Google Scholar 

  15. Braendlein M, Pappa AM, Ferro M, Lopresti A, Acquaviva C, Mamessier E, Malliaras GG, Owens RM (2017) Lactate detection in tumor cell cultures using organic transistor circuits. Adv Mater Weinheim 29:16057441–16057446

    Article  Google Scholar 

  16. Wang H, Sun YB, Chen QW, Yu YF, Cheng K (2010) Synthesis of carbon-encapsulated super paramagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property. Dalton Trans 39:9565–9569

    Article  CAS  Google Scholar 

  17. Teimuri-Mofrad R, Abbasi H, Hadi R (2019) Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material. Polymer 109:1971–1078

    Google Scholar 

  18. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    Article  CAS  Google Scholar 

  19. Zhang X, Fan X, Li H, Yan C (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22:24081–24091

    Article  CAS  Google Scholar 

  20. Wurtz CA (2019) Lecons de Philosophie Chimique. Ann Chim Phys 69:317–354

    Google Scholar 

  21. Gilroy JB, Patra SK, Mitchels JM, Winnik MA, Manners I (2011) Main-chain heterobimetallic block copolymers: synthesis and self-assembly of polyferrocenylsilane-b-poly(cobaltoceniumethylene). Agnew Chem Int Ed 50:5851–5855

    Article  CAS  Google Scholar 

  22. Gibbs JM, Park SJ, Anderson DR, Watson KJ, Mirkin CA, Nguyen ST (2005) Polymer DNA hybrids as electrochemical probes for the detection of DNA. J Am Chem Soc 127:1170–1178

    Article  CAS  Google Scholar 

  23. Hu Q, Wang QW, Kong JM, Li LZ, Zhang XJ (2018) Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of double-stranded DNA without sequence preference. Biosens Bioelectron 101:1–6

    Article  CAS  Google Scholar 

  24. Hu Q, Wang QW, Jiang CH, Zhang J, Kong JM, Zhan XJ (2018) Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity. Biosens Bioelectron 110:52–57

    Article  CAS  Google Scholar 

  25. Zhang JY, Liu QR, Ba YY, Cheng JM, Yang HX, Cui Y, Kong JM, Zhang XJ (2019) Anal Chim Acta 1094:99–105

    Article  Google Scholar 

  26. Zhao LY, Yang HX, Zheng XK, Li JG, Jian LH, Feng WS, Kong JM (2020) Dual signal amplification by polysaccharide and eATRP for ultrasensitive detection of CYFRA 21–1 DNA. Biosens Bioelectron 150:111895

    Article  CAS  Google Scholar 

  27. Wu YF, Wei W, Liu SQ (2012) Target-triggered polymerization for biosensing. Acc Chem Res 45:1441–1450

    Article  CAS  Google Scholar 

  28. Bai GY, Gao D, Liu Z, Zhou X, Wang JJ (2019) Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 576:437–441

    Article  CAS  Google Scholar 

  29. Yang GJ, Xiao ZQ, Tang CL, Deng Y, Huang H, He ZY (2019) Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron 141:111416

    Article  CAS  Google Scholar 

  30. Yu YY, Huang ZN, Zhou Y, Zhang LH, Liu AL, Chen W, Lin JH, Peng HP (2019) Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosens Bioelectron 126:1–6

    Article  CAS  Google Scholar 

  31. Wang T, Zhang Z, Li Y (2015) Amplified electrochemical detection of MecA gene in methicillin-resistant staphylococcus Aureus based on target recycling amplification and isothermal strand-displacement polymerization reaction. Sensors Actuators B Chem 221:148–154

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the project of tackling of key scientific and technical problems in Henan Province (192102310033), National Natural Science Foundation of China (21974068), and the project of tackling of key scientific and technical problems in Henan Province (202102310149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaixia Yang, Fuchun Si or Jinming Kong.

Ethics declarations

The clinical serum samples were obtained from The Third Affiliated Hospital of Henan University of Chinese Medicine. The Ethics Committee of Henan Province Hospital of Traditional Chinese Medicine approved the exploitation of serum samples for research purpose, and ten volunteers provided written informed consent before collecting serum samples.

Conflict of interest

The authors declare no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hao, L., Wang, W. et al. Functionalized graphene oxide in situ initiated ring-opening polymerization for highly sensitive sensing of cytokeratin-19 fragment. Microchim Acta 188, 123 (2021). https://doi.org/10.1007/s00604-021-04780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04780-7

Keywords

Navigation