Skip to main content
Log in

An ultrasensitive ratiometric immunosensor based on the ratios of conjugated distyrylbenzene derivative nanosheets with AIECL properties and electrochemical signal for CYFRA21-1 detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aggregation-induced electrochemiluminescence reagent, a distyrylbenzene derivative with donor–acceptor conjugated nanosheet structure, namely TPAPCN, was used as a trace label and modified on the electrode through the formation of classical sandwich complex of antibody-antigen–antibody in this work. In aggregate state, TPAPCN with twisted structure was limited in nanometer space through intermolecular π − π stacking interactions, which not only restricts the intramolecular motions but also combines a large number of singlet excitons to greatly trigger electrochemiluminescence (ECL). The ECL signal of this system enhanced with more captured cytokeratin 19 fragment 21–1 (CYFRA21-1) on the modified electrode. Three-dimensional graphene/platinum nanoparticles with large specific surface, and excellent electroconductivity and biocompatibility were prepared and acted as excellent carriers for thionine handling (3D-GN/PtNPs/Th), which was employed for improving the loading of antibodies and generating internal electrochemical signal. Consequently, a novel ratiometric sandwich immunosensor for CYFRA21-1 detection was fabricated based on TPAPCN and 3D-GN/PtNPs/Th, that is, a rapid and reliable detection was achieved through the ratio between ECL and electrochemical signals. The prepared sensor performed good linearity in the range of 50 fg/mL to 1 ng/mL with a detection limit as low as 16 fg/mL. Moreover, the detection results revealed well in the analysis of human serum samples, demonstrating a significant application for clinical monitoring and biomolecules detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang YG, Zhao GH, Chi H, Yang SH, Niu QF, Wu D, Cao W, Li TD, Ma HM, Wei Q. Self-luminescent lanthanide metal−organic frameworks as signal probes in electrochemiluminescence immunoassay. J Am Chem Soc. 2021;143:504–12.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang ZF, Wang M, Xu JL. Thymidine kinase 1 combined with CEA, CYFRA21-1 and NSE improved its diagnostic value for lung cancer. Life Sci. 2018;194:1–6.

    Article  CAS  PubMed  Google Scholar 

  3. Farzin L, Sadjadi S, Shamsipur M, Chabok A, Sheibani S. A sandwich-type electrochemical aptasensor for determination of MUC1 tumor marker based on PSMA-capped PFBT dots platform and high conductive RGO-N′1, N′3 -dihydroxymalonimidamide/thionine nanocomposite as a signal tag. Electroanal Chem. 2017;807:108–18.

    Article  CAS  Google Scholar 

  4. Gan XL, Yang JB, Wang L, Tan BB, Wang LS. Application of PETCT imaging information combined with tumor markers in etiological screening of infectious and non-infectious ascites. J Infect Public Heal. 2020;13:1997–2000.

    Article  Google Scholar 

  5. Chen Q, Ge F, Cui W, Wang F, Yang Z, Guo Y, Li LY, Bremner RM, Lin PP. Lung cancer circulating tumor cells isolated by the EpCAM-independent enrichment strategy correlate with cytokeratin 19-derived CYFRA21-1 and pathological staging. Clin Chim Acta. 2013;419:57–61.

    Article  CAS  PubMed  Google Scholar 

  6. Uenishi T, Kubo S, Hirohashi K, Tanaka H, Shuto T, Yamamoto T, Nishiguchi S. Cytokeratin-19 fragments in serum (CYFRA 21–1) as a marker in primary liver cancer, Brit. J Cancer. 2003;88:1894–9.

    Article  CAS  Google Scholar 

  7. He GW, Liao Y, Li M, Liu ZY, Song ZX, Li L, Luo MQ. The diagnostic efficacy of CYFRA21-1 on intrahepatic cholangiocarcinoma: ameta-analysis. Clin Res Hepatol Gas. 2019;43:266–72.

    Article  CAS  Google Scholar 

  8. Sun TQ, Zhao ZQ, Liu WT, Xu ZH, He HW, Ning BA, Jiang YQ, Gao ZX. Development of sandwich chemiluminescent immunoassay based on an anti-staphylococcal enterotoxin B nanobody-alkaline phosphatase fusion protein for detection of staphylococcal enterotoxin B. Anal Chim Acta. 2020;1108:28–36.

    Article  CAS  PubMed  Google Scholar 

  9. Ko JA, Lim HB. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay. Anal Chim Acta. 2016;938:1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Dixit CK, Vashist SK, Neill FTO, Reilly BO, MacCraith BD, Kennedy RO. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal Chem. 2010;82:7049–52.

    Article  CAS  PubMed  Google Scholar 

  11. Waltari E, Carabajal E, Sanyal M, Friedland N, McCutcheon KM. Adaption of a conventional ELISA to a 96-well ELISA-array for measuring the antibody responses to influenza virus proteins and vaccines. J Immunol Methods. 2020;112789:481–2.

    Google Scholar 

  12. Glasgow BJ, Mccannel TA. Correlation of immunocytochemistry of BRCA1-associated protein-1 (BAP1) with other prognostic markers in uveal melanoma. Am J Ophthalmol. 2018;189:122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hasanzadeh M, Shadjou N, Lin YH, Guardia MDL. Nanomaterials for use in immunosensing of carcinoembryonic antigen (CEA): recent advances, Trend. Anal Chem. 2017;86:185–205.

    CAS  Google Scholar 

  14. Li WJ, Yang Y, Ma CY, Song YJ, Qiao XW, Hong CL. A sandwich-type electrochemical immunosensor for ultrasensitive detection of multiple tumor markers using an electrical signal difference strategy. Talanta. 2020;219:121322.

    Article  CAS  PubMed  Google Scholar 

  15. Chen M, Hou CJ, Huo DQ, Yang M, Fa HB. A highly sensitive electrochemical DNA biosensor for rapid detection of CYFRA21-1, a marker of non-small cell lung cancer. Anal Methods. 2015;7:9466–73.

    Article  CAS  Google Scholar 

  16. Cheng JM, Hu K, Liu QR, Liu YJ, Yang HX, Kong JM. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Anal Bioanal Chem. 2021;413:2543–51.

    Article  CAS  PubMed  Google Scholar 

  17. Li XJ, Wu D, Ma HM, Wang H, Wang YG, Fan DW, Du B, Wei Q, Zhang N. Ultrasensitive amyloid-β proteins detection based on curcumin conjugated ZnO nanoparticles quenching electrochemiluminescence behavior of luminol immobilized on Au@MoS2/Bi2S3 nanorods. Biosens Bioelectron. 2019;131:136–42.

    Article  CAS  PubMed  Google Scholar 

  18. Sun HP, Zhang JW, Bai WQ, Li Y. Electrogenerated chemiluminescence biosensing method for DNA hydroxymethylation detection via glycosylation and a new multi-functional ECL signal compound. Sens Actuators B Chem. 2020;322:128582.

    Article  CAS  Google Scholar 

  19. Zhao CZ, Niu LL, Wang XY, Sun W. A simple and convenient electrochemiluminescence immunoassay by using gold nanoparticles as both label and co-reactant. Bioelectrochemistry. 2020;135:107585.

    Article  CAS  PubMed  Google Scholar 

  20. Ito H, Segawa Y, Murakami K, Itami K. Polycyclic arene synthesis by annulative π-extension. J Am Chem Soc. 2019;141:3–10.

    Article  CAS  PubMed  Google Scholar 

  21. Huang YJ, Wang ZR, Chen Z, Zhang QC. Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem Int Edit. 2019;58:9696–711.

    Article  CAS  Google Scholar 

  22. Liu HW, Wang LF, Gao HF, Qi HL, Gao Q, Zhang CX. Aggregation-induced enhanced electrochemiluminescence from organic nanoparticles of donor-acceptor based coumarin derivatives. ACS Appl Mater Inter. 2017;9:44324–31.

    Article  CAS  Google Scholar 

  23. Han ZG, Yang ZF, Sun HS, Xu YL, Ma XF, Shan DL, Chen J, Huo SH, Zhang Z, Du PY, Lu XQ. Electrochemiluminescence platforms based on small water-insoluble organic molecules for ultrasensitive aqueous-phase detection. Angew Chem Int Edit. 2019;58:5915–9.

    Article  CAS  Google Scholar 

  24. Han ZG, Zhang YP, Wu YX, Li ZM, Bai L, Huo SH, Lu XQ. Substituent-induced aggregated state electrochemiluminescence of tetraphenylethene derivatives. Anal Chem. 2019;91:8676–82.

    Article  CAS  PubMed  Google Scholar 

  25. Liao CW, Hsu YC, Chu CC, Chang CH, Krucaite G, Volyniuk D, Grazulevicius JV, Grigalevicius S. Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes. Org Electron. 2019;67:279–86.

    Article  CAS  Google Scholar 

  26. Li C, Hanif M, Li XL, Zhang ST, Xie ZQ, Liu LL, Yang B, Su SJ, Ma YG. Effect of cyano-substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. J Mater Chem C. 2016;4:7478.

    Article  CAS  Google Scholar 

  27. Ji SY, Zhao W, Gao H, Quan YW, Xu JJ, Chen HY. Highly efficient aggregation-induced electrochemiluminescence of polyfluorene derivative nanoparticles containing tetraphenylethylene. IScience. 2020;23:100774.

    Article  CAS  PubMed  Google Scholar 

  28. Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: design, mechanistic insights, and applications. J Photoch Photobio C. 2019;41:100317.

    Article  CAS  Google Scholar 

  29. Lin Y, Jia JP, Yang R, Chen DZ, Wang J, Luo F, Guo LH, Qiu B, Lin ZY. Ratiometric immunosensor for GP73 detection based on the ratios of electrochemiluminescence and electrochemical dignal using DNA tetrahedral nanostructure as the carrier of stable reference signal. Anal Chem. 2019;91:3717–24.

    Article  CAS  PubMed  Google Scholar 

  30. Ye J, Zhu LP, Yan MX, Zhu QJ, Lu QQ, Huang JS, Cui H, Yang XR. Dual-wavelength ratiometric electrochemiluminescence immunosensor for cardiac troponin I detection. Anal Chem. 2018;91:1524–31.

    Article  PubMed  Google Scholar 

  31. Zhao XJ, Jia YH, Liu ZH. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J Colloid Interf Sci. 2019;536:463–73.

    Article  CAS  Google Scholar 

  32. Hossain MF, Slaughter G. PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing. Electroanal Chem. 2020;861:113990.

    Article  CAS  Google Scholar 

  33. Jouyandeh M, Yarahmadi E, Didehban K, Ghiyasi S, Paran SMR, Puglia D, Ali JA, Jannesari A, Saeb MR, Ranjbar Z, Ganjali MR. Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: effect of starch functionalization of GO nanosheets. Prog Org Coat. 2019;136:105217.

    Article  CAS  Google Scholar 

  34. Lv H, Li YY, Zhang XB, Li XJ, Xu Z, Chen L, Li DG, Dong YH. Thionin functionalized signal amplification label derived dual-mode electrochemical immunoassay for sensitive detection of cardiac troponin I. Biosens Bioelectron. 2019;133:72–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zasonská B, Čadková M, Kovářová A, Bílková Z, Korecká L, Horák D. Thionine-modified poly (glycidyl methacrylate) nanospheres as labels of antibodies for biosensing applications. ACS Appl Mater Inter. 2015;7:24926–31.

    Article  Google Scholar 

  36. Ye YK, Xie JQ, Ye YW, Cao XD, Zheng HS, Xu X, Zhang Q. A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon. 2018;129:730–7.

    Article  CAS  Google Scholar 

  37. Xu XQ, Feng YB, Chen ZH, Wang SB, Wu GH, Huang TL, Ma J, Wen G. Activation of peroxymonosulfate by CuCo2O4-GO for efficient degradation of bisphenol a from aqueous environment. Sep Purif Technol. 2020;251:117351.

    Article  CAS  Google Scholar 

  38. Alinajafi HA, Ensafi AA, Rezaei B. Reduced graphene oxide decorated with thionine, excellent nanocomposite material for a powerful electrochemical supercapacitor. Int J Hydrogen Energ. 2018;43:19102–10.

    Article  CAS  Google Scholar 

  39. Xu J, Wang RX, Chen X, Zhou R, Zhang JJ. Cu2SnS3 nanocrystals decorated RGO nanosheets towards efficient and stable hydrogen evolution reaction in both acid and alkaline solutions. Mater Today Energy. 2020;17:100435.

    Article  Google Scholar 

  40. Mohammadi A, Heydari-Bafrooei E, Foroughi MM, Mohammadi M. Electrochemical aptasensor for ultrasensitive detection of PCB77 using thionine-functionalized MoS2 -rGO nanohybrid. Microchem J. 2020;155:10474.

    Article  Google Scholar 

  41. Zhu LM, Luo LQ, Wang ZX. DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens Bioelectron. 2012;35:507–11.

    Article  CAS  PubMed  Google Scholar 

  42. Wei Q, Mao KX, Wu D, Dai YX, Yang J, Du B, Yang MH, Li H. A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens Actuators B Chem. 2010;149:314–8.

    Article  CAS  Google Scholar 

  43. Song NN, Wang YZ, Yang XY, Zong HL, Chen YX, Ma Z, Chen CX. A novel electrochemical biosensor for the determination of dopamine and ascorbic acid based on graphene oxide/poly (aniline-co-thionine) nanocomposite. Journal of Electroanal Chem. 2020;873:114352.

    Article  CAS  Google Scholar 

  44. Carrara S, Aliprandi A, Hogan CF, Cola LD. Aggregation-induced electrochemiluminescence of platinum(II) complexes. J Am Chem Soc. 2017;139:14605–10.

    Article  CAS  PubMed  Google Scholar 

  45. Gao TB, Zhang JJ, Yan RQ, Cao DK, Jiang DC, Ye DY. Aggregation-induced electrochemiluminescence from a cyclometalated iridium(III) complex. Inorg Chem. 2018;57:4310–6.

    Article  CAS  PubMed  Google Scholar 

  46. Lu LP, Zhang LL, Miao WJ, Wang XY, Guo GS. Aggregation-induced electrochemiluminescence of the dichlorobis(1,10-phenanthroline)ruthenium(II) (Ru(phen)2Cl2)/tri-n-propylamine (TPrA) system in H2O−MeCN mixtures for identification of nucleic acids. Anal Chem. 2020;92:9613–9.

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Sun X, Wei D, Ju HX, Du Y, Ma HM, Wei Q. Aggregation-induced electrochemiluminescence bioconjugates of apoferritin-encapsulated iridium(III) complexes for biosensing application. Anal Chem. 2021;93:1553–60.

    Article  CAS  PubMed  Google Scholar 

  48. Fu HB, Yao JN. Size effects on the optical properties of organic nanoparticles. J Am Chem Soc. 2001;123:1434–9.

    Article  CAS  Google Scholar 

  49. Luo JD, Xie ZL, Lam JW, Cheng L, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;18:1740–1.

    Article  Google Scholar 

  50. Yan MX, Ye J, Zhu QJ, Zhu LP, Huang JS, Yang XR. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem. 2019;91:10156–63.

    Article  CAS  PubMed  Google Scholar 

  51. Lv WX, Yang QT, Li Q, Li HY, Li F. Quaternary ammonium salt-functionalized tetraphenylethene derivative boosts electrochemiluminescence for highly sensitive aqueous-phase biosensing. Anal Chem. 2020;92:11747–54.

    Article  CAS  PubMed  Google Scholar 

  52. Qu L, Yang L, Li YY, Ren X, Wang H, Fan Da.W., Wang XY, Wei Q, Ju HX. Dual-signaling electrochemical ratiometric method for competitive immunoassay of CYFRA21-1 based on urchin-like Fe3O4@PDA-Ag and Ni3Si2O5(OH)4-Au absorbed methylene blue nanotubes. ACS Appl Mater Interfaces. 2021;13:5795–802.

    Article  CAS  PubMed  Google Scholar 

  53. Zeng Y, Bao J, Zhao YN, Huo DQ, Chen M, Yang M, Fa HB, Hou CJ. A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21–1 based on 3D graphene with gold nanopaticle modified electrode. Talanta. 2018;178:122–8.

    Article  CAS  PubMed  Google Scholar 

  54. Meng XY, Chen X, Wu WH, Zheng W, Deng HH, Xu LY, Chen W, Li ZL, Peng HP. Electrochemiluminescent immunoassay for the lung cancer biomarker CYFRA21-1 using MoOx quantum dots. Microchim Acta. 2019;186:855.

    Article  CAS  Google Scholar 

  55. Yu YY, Huang ZN, Zhou Y, Zhang LH, Liu AL, Chen W, Lin JH, Peng HP. Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosens Bioelectron. 2019;126:1–6.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng Y, Bao J, Zhao YN, Huo DQ, Chen M, Qi YL, Yang M, Fa HB, Hou CJ. A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry. 2018;120:183–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We received support from the National Natural Science Foundation of China (No. 21705084), and the Natural Science Foundation of Shandong Province of China (No. ZR2017BB074, No. ZR2018PB015), National Training Program of Innovation and Entrepreneurship for Undergraduates (No. S202010431027), Qilu University of Technology of Training Program of Innovation and Entrepreneurship for Undergraduates (No. xj201910431125), the Innovation Team of Jinan City (2018GXRC004), and Special Funds for Taishan Scholars Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Fang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7985 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Bi, M., Xu, X. et al. An ultrasensitive ratiometric immunosensor based on the ratios of conjugated distyrylbenzene derivative nanosheets with AIECL properties and electrochemical signal for CYFRA21-1 detection. Anal Bioanal Chem 414, 1389–1402 (2022). https://doi.org/10.1007/s00216-021-03764-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03764-z

Keywords

Navigation