Skip to main content
Log in

Synthesis of fluorescent nanoprobe with simultaneous response to intracellular pH and Zn2+ for tumor cell distinguishment

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel dual-functional nanoprobe was designed and synthesized by facile assembly of quinoline derivative (PEIQ) and meso-tetra (4-carboxyphenyl) porphine (TCPP) via electrostatic interaction for simultaneous sensing of fluorescence of Zn2+ and pH. Under the single-wavelength excitation at 400 nm, this nanoprobe not only exhibits “OFF-ON” green fluorescence at 512 nm by specific PEIQ-Zn2+ chelation, but also presents red fluorescence enhancement at 654 nm by H+-triggered TCPP release. The nanoprobe demonstrated excellent sensing performance with a good linear range (Zn2+, 1–40 μM; pH, 5.0–8.0), low detection limit (Zn2+, 0.88 μM), and simultaneous response towards Zn2+ and pH in pure aqueous solution within 2 min. More importantly, this dual-functional nanoprobe demonstrates the capability of discerning cancerous cells from normal cells, as evidenced by the fact that cancerous HepG2 cells in tumor microenvironment exhibit substantially higher red fluorescence and significantly lower green fluorescence than normal HL-7702 cells. The simultaneous, real-time fluorescence imaging of multiple analytes in a living system could be significant for cell analysis and tracking, cancer diagnosis, and even fluorescence-guided surgery of tumors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He LW, Dong BL, Liu Y, Lin WY (2016) Fluorescent chemosensors manipulated by dual/ triple interplaying sensing mechanisms. Chem Soc Rev 45(23):6449–6461. https://doi.org/10.1039/c6cs00413j

    Article  CAS  PubMed  Google Scholar 

  2. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224. https://doi.org/10.1126/science.1124618

    Article  CAS  PubMed  Google Scholar 

  3. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108(5):1517–1549. https://doi.org/10.1021/cr078203u

    Article  CAS  PubMed  Google Scholar 

  4. Qian XH, Xu ZC (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44(14):4487–4493. https://doi.org/10.1039/c4cs00292j

    Article  CAS  PubMed  Google Scholar 

  5. Schaferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem 51(15):3532–3554. https://doi.org/10.1002/anie.201105459

    Article  CAS  Google Scholar 

  6. Turnbull WL, Luyt LG (2018) Amino-substituted 2,2′-bipyridine ligands as fluorescent indicators for Zn(II) and applications for fluorescence imaging of prostate cells. Chemistry 24(54):14539–14546. https://doi.org/10.1002/chem.201803051

    Article  CAS  PubMed  Google Scholar 

  7. Bourassa D, Elitt CM, McCallum AM, Sumalekshmy S, McRae RL, Morgan MT, Siegel N, Perry JW, Rosenberg PA, Fahrni CJ (2018) Chromis-1, a ratiometric fluorescent probe optimized for two-photon microscopy reveals dynamic changes in labile Zn(II) in differentiating oligodendrocytes. ACS Sensors 3(2):458–467. https://doi.org/10.1021/acssensors.7b00887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan Y, Shi YP, Chen ZH, Chen JY, Hou MF, Chen ZP, Li CW, Yi CQ (2016) Design of multiple logic gates based on chemically triggered fluorescence switching of functionalized polyethylenimine. ACS Appl Mater Interfaces 8(14):9472–9482. https://doi.org/10.1021/acsami.6b02080

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Niu QF, Wei T, Li TD (2019) Novel thiophene-based colorimetric and fluorescent turn-on sensor for highly sensitive and selective simultaneous detection of Al3+ and Zn2+ in water and food samples and its application in bioimaging. Anal Chim Acta 1049:196–212. https://doi.org/10.1016/j.aca.2018.10.043

    Article  CAS  PubMed  Google Scholar 

  10. Song XY, Yue ZH, Zhang JY, Jiang YXL, Wang ZH, Zhang SS (2018) Multicolor upconversion nanoprobes based on a dual luminescence resonance energy transfer assay for simultaneous detection and bioimaging of [Ca2+]i and pHi in living cells. Chemistry 24(24):6458–6463. https://doi.org/10.1002/chem.201800154

    Article  CAS  PubMed  Google Scholar 

  11. Ma TC, Hou Y, Zeng JF, Liu CY, Zhang PS, Jing LH, Shangguan D, Gao MY (2018) Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J Am Chem Soc 140(1):211–218. https://doi.org/10.1021/jacs.7b08900

    Article  CAS  PubMed  Google Scholar 

  12. Liu ZC, Pei H, Zhang LM, Tian Y (2018) Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons. ACS Nano 12(12):12357–12368. https://doi.org/10.1021/acsnano.8b06322

    Article  CAS  PubMed  Google Scholar 

  13. Zhang RL, Zhao J, Han GM, Liu ZJ, Liu C, Zhang C, Liu BH, Jiang CL, Liu RY, Zhao TT, Han MY, Zhang ZP (2016) Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. J Am Chem Soc 138(11):3769–3778. https://doi.org/10.1021/jacs.5b12848

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XL, Liao NS, Chen G, Zheng AX, Zeng YY, Liu XL, Liu JF (2017) A fluorescent turn on nanoprobe for simultaneous visualization of dual-targets involved in cell apoptosis and drug screening in living cells. Nanoscale 9(30):10861–10868. https://doi.org/10.1039/c7nr03564k

    Article  CAS  PubMed  Google Scholar 

  15. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19(10):1553–1566. https://doi.org/10.1002/adfm.200801655

    Article  CAS  Google Scholar 

  16. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390. https://doi.org/10.1039/b709883a

    Article  CAS  PubMed  Google Scholar 

  17. Shi YP, Zhang H, Yue ZF, Zhang ZM, Teng KS, Li MJ, Yi CQ, Yang MS (2013) Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection. Nanotechnology 24(37):375501. https://doi.org/10.1088/0957-4484/24/37/375501

    Article  CAS  PubMed  Google Scholar 

  18. Pan Y, Yang J, Fang YN, Zheng JH, Song R, Yi CQ (2017) One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging. J Mater Chem B 5(1):92–101. https://doi.org/10.1039/c6tb02115h

    Article  CAS  PubMed  Google Scholar 

  19. Ji XF, Yao Y, Li JY, Yan XZ, Huang FH (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135(1):74–77. https://doi.org/10.1021/ja3108559

    Article  CAS  PubMed  Google Scholar 

  20. Cheng HB, Cui YX, Wang R, Kwon N, Yoon J (2019) The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coord Chem Rev 392:237–254. https://doi.org/10.1016/j.ccr.2019.04.004

    Article  CAS  Google Scholar 

  21. Mejia-Ariza R, Grana-Suarez L, Verboom W, Huskens J (2017) Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B 5(1):36–52. https://doi.org/10.1039/c6tb02776h

    Article  CAS  PubMed  Google Scholar 

  22. Stoffelen C, Huskens J (2016) Soft supramolecular nanoparticles by noncovalent and host-guest interactions. Small 12(1):96–119. https://doi.org/10.1002/smll.201501348

    Article  CAS  PubMed  Google Scholar 

  23. Ortiz-Rivera I, Mathesh M, Wilson DA (2018) A supramolecular approach to nanoscale motion: polymersome-based self-propelled nanomotors. Acc Chem Res 51(9):1891–1900. https://doi.org/10.1021/acs.accounts.8b00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kopp M, Kollenda S, Epple M (2017) Nanoparticle-protein interactions: therapeutic approaches and supramolecular chemistry. Acc Chem Res 50(6):1383–1390. https://doi.org/10.1021/acs.accounts.7b00051

    Article  CAS  PubMed  Google Scholar 

  25. Zeng CT, Shang WT, Wang K, Chi CW, Jia XH, Fang C, Yang D, Ye JZ, Fang CH, Tian J (2016) Intraoperative identification of liver cancer microfoci using a targeted near-infrared fluorescent probe for imaging-guided surgery. Sci Rep 6:21959. https://doi.org/10.1038/srep21959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271(5252):1081–1085. https://doi.org/10.1126/science.271.5252.1081

    Article  CAS  PubMed  Google Scholar 

  27. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  PubMed  Google Scholar 

  28. Margalioth EJ, Schenker JG, Chevion M (1983) Copper and zinc levels in normal and malignant tissues. Cancer 52(5):868–872. https://doi.org/10.1002/1097-0142(19830901)52:5<868::AID-CNCR2820520521>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  29. Goronzy DP, Ebrahim M, Rosei F, Arramel, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF (2018) Supramolecular assemblies on surfaces: nanopatterning, functionality, and reactivity. ACS Nano 12(8):7445–7481. https://doi.org/10.1021/acsnano.8b03513

    Article  CAS  PubMed  Google Scholar 

  30. Shi YP, Chen ZH, Cheng X, Pan Y, Zhang H, Zhang ZM, Li CW, Yi CQ (2014) A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn2+. Biosens Bioelectron 61:397–403. https://doi.org/10.1016/j.bios.2014.05.050

    Article  CAS  PubMed  Google Scholar 

  31. Chen YP, Li XD (2011) Near-infrared fluorescent nanocapsules with reversible response to thermal/pH modulation for optical imaging. Biomacromolecules 12(12):4367–4372. https://doi.org/10.1021/bm201350d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grana-Suarez L, Verboom W, Buckle T, Rood M, van Leeuwen FWB, Huskens J (2016) Loading and release of fluorescent oligoarginine peptides into/from pH-responsive anionic supramolecular nanoparticles. J Mater Chem B 4(22):4025–4032. https://doi.org/10.1039/c6tb00933f

    Article  CAS  PubMed  Google Scholar 

  33. Chen WD, Wang Q, Ma JP, Li C-W, Yang M, Yi CQ (2018) A ratiometric fluorescent core-shell nanoprobe for sensing and imaging of zinc(II) in living cell and zebrafish. Microchim Acta 185:523. https://doi.org/10.1007/s00604-018-3066-1

    Article  CAS  Google Scholar 

  34. Yan JL, Estévez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44–50. https://doi.org/10.1016/S1748-0132(07)70086-5

    Article  Google Scholar 

  35. Zhu YY, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum 63(10):3136–3141. https://doi.org/10.1002/art.30520

    Article  PubMed  Google Scholar 

  36. Ebara M, Fukuda H, Hatano R, Saisho H, Nagato Y, Suzuki K, Nakajima K, Yukawa M, Kondo F, Nakayama A, Sakurai H (2000) Relationship between copper, zinc and metallothionein in hepatocellular carcinoma and its surrounding liver parenchyma. J Hepatol 33(3):415–422. https://doi.org/10.1016/S0168-8278(00)80277-9

    Article  CAS  PubMed  Google Scholar 

  37. Danielsen A, Steinnes E (1970) Study of some selected trace elements in normal and cancerous tissue by neutron activation analysis. J Nucl Med 11(6):260–264

    CAS  PubMed  Google Scholar 

  38. Bellion E (1992) The biological chemistry of the elements: the inorganic chemistry of life. J Chem Educ 69(12):A326. https://doi.org/10.1021/ed069pA326.1

    Article  Google Scholar 

  39. Evans CW, Fitzgerald M, Clemons TD, House MJ, Padman BS, Shaw JA, Saunders M, Harvey AR, Zdyrko B, Luzinov I, Silva GA, Dunlop SA, Iyer KS (2011) Multimodal analysis of PEI-mediated endocytosis of nanoparticles in neural cells. ACS Nano 5(11):8640–8648. https://doi.org/10.1021/nn2022149

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the National Scientific Foundation of China (81901808) and the Guangdong Natural Science Foundation (S2017A030313076, 2020A1515010661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Yi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 13513 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Shi, Y., Chen, W. et al. Synthesis of fluorescent nanoprobe with simultaneous response to intracellular pH and Zn2+ for tumor cell distinguishment. Microchim Acta 188, 9 (2021). https://doi.org/10.1007/s00604-020-04682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04682-0

Keywords

Navigation