Skip to main content

Advertisement

Log in

Portable electrochemical immunosensor for detection of Mycobacterium tuberculosis secreted protein CFP10-ESAT6 in clinical sputum samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0–1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL−1 with a limit of detection at 1.5 ng mL−1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Srivasta SK, van Rijn CJ, Jongsma MA (2016) Biosensor-based detection of tuberculosis. RSC Adv 6:17759–17771. https://doi.org/10.1039/C5RA15269K

    Article  CAS  Google Scholar 

  2. Tamada Y, Kanda S, Yoshidome A, Hayashi I, Miyake M, Nishiyama T (2012) Diagnosis of active tuberculosis using MPB64, a specific antigen of Mycobacterium Bovis. Microbiol Immunol 56:740–747. https://doi.org/10.1111/j.1348-0421.2012.00504.x

    Article  CAS  PubMed  Google Scholar 

  3. Global tuberculosis report 2015 (2015) Geneva: World Health Organization

  4. Global tuberculosis report 2019 (2019) Geneva: World Health Organization

  5. Sypabekova M, Jolly P, Estrela P, Kanayeva D (2019) Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron 123:141–151. https://doi.org/10.1016/j.bios.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  6. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, Zumla A (2018) Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis 18(7):e199–e210. https://doi.org/10.1016/S1473-3099(18)30111-7

    Article  CAS  PubMed  Google Scholar 

  7. Phan LMT, Rafique R, Baek SH, Nguyen TP, Park KY, Kim EB, Kim JG, Park JP, Kailasa SK, Kim HJ, Chung C, Shim TS, Park TJ (2018) Gold-copper nanoshell dot-blot immunoassay for naked-eye sensitive detection of tuberculosis specific CFP-10 antigen. Biosens Bioelectron 121:111–117. https://doi.org/10.1016/j.bios.2018.08.068

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Lee J, Lee KI, Park TJ, Kim HJ, Lee J (2013) Rapid monitoring of CFP-10 during culture of Mycobacterium tuberculosis by using a magnetophoretic immunoassay. Sensors Actuators B Chem 177:327–333. https://doi.org/10.1016/j.snb.2012.11.011

    Article  CAS  Google Scholar 

  9. Tufa LT, Oh S, Tran VT, Kim J, Jeong KJ, Park TJ, Lee J (2018) Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochim Acta 290:369–377. https://doi.org/10.1016/j.electacta.2018.09.108

    Article  CAS  Google Scholar 

  10. Kim J, Lee KS, Kim EB, Paik S, Chang CL, Park TJ, Kim HJ, Lee J (2017) Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens Bioelectron 96:68–76. https://doi.org/10.1016/j.bios.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  11. Mukundan H, Kumar S, Price DN, Ray SM, Lee YJ, Min S, Eum S, Kubicek-Sutherland J, Resnick JM, Grace WK, Anderson AS, Hwang SH, Cho SN, Via LE, Barry C, Sakamuri R, Swanson BI (2012) Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis 92:407–416. https://doi.org/10.1016/j.tube.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  12. Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M (2017) Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater Sci Eng C 74:465–470

    Article  CAS  Google Scholar 

  13. He F, Xiong Y, Liu J, Tong F, Yan D (2016) Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis. Biosens Bioelectron 77:799–804. https://doi.org/10.1016/j.bios.2015.10.054

    Article  CAS  PubMed  Google Scholar 

  14. Martínez-Mancera FD, García-López P, Hernández-López JL (2015) Pre-clinical validation study of a miniaturized electrochemical immunoassay based on square wave voltammetry for early detection of carcinoembryonic antigen in human serum. Clin Chim Acta 444:199–205. https://doi.org/10.1016/j.cca.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  15. Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Md Noor SS, Ahmad Raston NH, Mohammad F (2018) Immuno nanosensor for the ultrasensitive naked eye detection of tuberculosis. Sensors 18(6):1932. https://doi.org/10.3390/s18061932

    Article  CAS  Google Scholar 

  16. Kim EJ, Kim EB, Lee SW, Cheon SA, Kim HJ, Lee J, Lee MK, Ko S, Park TJ (2017) An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosens Bioelectron 87:150–156. https://doi.org/10.1016/j.bios.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  17. Abe C, Hirano K, Tomiyama T (1999) Simple and rapid identification of the Mycobacterium tuberculosis complex by immunochromatographic assay using anti-MPB64 monoclonal antibodies. J Clin Microbiol 37(11):3693–3697

    Article  CAS  Google Scholar 

  18. Wu X, Wang Y, Weng T, Hu C, Wang FXC, Wu Z, Yu D, Lu H, Yao H (2017) Preparation of immunochromatographic strips for rapid detection of early secreted protein ESAT-6 and culture filtrate protein CFP-10 from Mycobacterium tuberculosis. Medicine 96(51):e9350. https://doi.org/10.1097/MD.0000000000009350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan KF, Lim HN, Shams N, Jayabal S, Pandikumar A, Huang NM (2016) Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater Sci Eng C 58:666–674. https://doi.org/10.1016/j.msec.2015.09.010

    Article  CAS  Google Scholar 

  20. Fei J, Dou W, Zhao G (2015) A sandwich electrochemical immunoassay for Salmonella pullorum and Salmonella gallinarum based on a AuNPs/SiO2/Fe3O4 adsorbing antibody and 4 channel screen printed carbon electrode electrodeposited gold nanoparticles. RSC Adv 5:74548–74556. https://doi.org/10.1039/C5RA12491C

    Article  CAS  Google Scholar 

  21. Roberts A, Tripathi PP, Gandhi S (2019) Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-a biomarker of cancer. Biosens Bioelectron 141:111398. https://doi.org/10.1016/j.bios.2019.111398

    Article  CAS  PubMed  Google Scholar 

  22. Islam S, Shukla S, Bajpai VK, Han YK, Huh YS, Kumar A, Ghosh A, Gandhi S (2019) A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens Bioelectron 126:792–799. https://doi.org/10.1016/j.bios.2018.11.041

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Zhang B, Ye X, Yan Y, Huang L, Jiang Z, Tan S, Cai X (2016) Electrochemical immunosensor for interferon-γ based on disposable ITO detector and HRP-antibody-conjugated nano gold as signal tag. Mater Sci Eng C 59:577–584. https://doi.org/10.1016/j.msec.2015.10.066

    Article  CAS  Google Scholar 

  24. Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Ab Rahman SK, Abd Rahman SF (2020) Surface enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials 13(149):1–15. https://doi.org/10.3390/ma13010149

    Article  CAS  Google Scholar 

  25. Wei Q, Xiang Z, He J, Wang G, Li H, Qian Z, Yang M (2010) Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosens Bioelectron 26:627–631. https://doi.org/10.1016/j.bios.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  26. Duangkaew P, Tapaneeyakorn S, Apiwat C, Dharakul T (2015) Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16INK4a cervical cancer detection in clinical samples. Biosens Bioelectron 74:673–679. https://doi.org/10.1016/j.bios.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  27. He C, Wang J, Gao N, He H, Zou K, Ma M, Zhou Y, Cai Z, Chang G, He Y (2019) A gold electrode modified with a gold-graphene oxide nanocomposite for non-enzymatic sensing of glucose at near-neutral pH values. Microchim Acta 186(11):722. https://doi.org/10.1007/s00604-019-3796-8

    Article  CAS  Google Scholar 

  28. Li J, Liu S, Yu J, Lian W, Cui M, Xu W, Huang J (2013) Electrochemical immunosensor based on graphene-polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors Actuators B Chem 188:99–105. https://doi.org/10.1016/j.snb.2013.06.082

    Article  CAS  Google Scholar 

  29. Sharma V, Hynek D, Trnkova L, Hemzal D, Marik M, Kizek R, Hubalek J (2016) Electrochemical determination of adenine using a glassy carbon electrode modified with graphene oxide and polyaniline. Microchim Acta 183:1299–1306. https://doi.org/10.1007/s00604-015-1740-0

    Article  CAS  Google Scholar 

  30. Lim SA, Yoshikawa H, Tamiya E, Yasin HM, Ahmed MU (2014) A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Adv 4:58460–58466. https://doi.org/10.1039/c4ra11066h

    Article  CAS  Google Scholar 

  31. Li N, Wang Y, Cao W, Zhang Y, Yan T, Du B, Wei Q (2015) An ultrasensitive electrochemical immunosensor for CEA using MWCNT-NH2 supported PdPt nanocages as labels for signal amplification. J Mater Chem B 3:2006–2011. https://doi.org/10.1039/c4tb01695e

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Wu F, Chen DZ, Lin HW (2014) An electrochemical immunosensor for rapid determination of clenbuterol by using magnetic nanocomposites to modify screen printed carbon electrode based on competitive immunoassay mode. Sensors Actuators B Chem 192:529–535. https://doi.org/10.1016/j.snb.2013.11.011

    Article  CAS  Google Scholar 

  33. Zhao X, Cai Y, Wang T, Shi Y, Jiang G (2008) Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Anal Chem 80(23):9091–9096. https://doi.org/10.1021/ac801581m

    Article  CAS  PubMed  Google Scholar 

  34. Cui YR, Hong C, Zhou YL, Li Y, Gao XM, Zhang XX (2011) Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation. Talanta 85:1246–1252. https://doi.org/10.1016/j.talanta.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  35. Mohd Azmi UZ, Yusof NA, Kusnin N, Abdullah J, Suraiya S, Ong PS, Ahmad Raston NH, Abd Rahman SF, Mohamad Fathil MF (2018) Sandwich electrochemical immunosensor for early detection of tuberculosis based on graphene/polyaniline-modified screen-printed gold electrode. Sensors 18(11):3926. https://doi.org/10.3390/s18113926

    Article  CAS  Google Scholar 

  36. Zhou H, Lee J, Park TJ, Lee SJ, Park JY, Lee J (2012) Ultrasensitive DNA monitoring by Au-Fe3O4 nanocomplex. Sensors Actuators B Chem 163:224–232. https://doi.org/10.1016/j.snb.2012.01.040

    Article  CAS  Google Scholar 

  37. Chauhan R, Basu T (2015) Functionalised Au coated iron oxide nanocomposites based reusable immunosensor for AFB1 detection. J Nanomater 2015:1–16. https://doi.org/10.1155/2015/607268

    Article  CAS  Google Scholar 

  38. Vo NT, Ngo HD, Vu DL, Duong AP, Lam QV (2015) Conjugation of E. coli O157:H7 antibody to CdSe/ZnS quantum dots. J Nanomater 2015(Article ID 265315):1–7. https://doi.org/10.1155/2015/265315

    Article  CAS  Google Scholar 

  39. Molazemhosseini A, Magagnin L, Vena P, Liu CC (2016) Single-use disposable electrochemical label-free immunosensor for detection of glycated haemoglobin (HbA1c) using differential pulse voltammetry (DPV). Sensors 16(1024):1–11. https://doi.org/10.3390/s16071024

    Article  CAS  Google Scholar 

  40. Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, Rahman NA (2017) Synthesis and characterization of polyaniline/graphene composite nanofiber and its application as an electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis. Sensors 17(2789):1–17. https://doi.org/10.3390/s17122789

    Article  CAS  Google Scholar 

  41. Lah ZMANH, Alang Ahmad SA, Zaini MS, Kamarudin MA (2019) An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal 174:608–617. https://doi.org/10.1016/j.jpba.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  42. Ariffin N, Yusof NA, Abdullah J, Abd Rahman SF, Ahmad Raston NH, Kusnin N, Suraiya S (2020) Lateral flow immunoassay for naked eye detection of Mycobacterium tuberculosis. J Sens 2020(Article ID 1365983):1–10. https://doi.org/10.1155/2020/1365983

    Article  CAS  Google Scholar 

  43. Wang L, Leng C, Tang S, Lei J, Ju H (2012) Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens Bioelectron 38:421–424. https://doi.org/10.1016/j.bios.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  44. Core curriculum on tuberculosis: what the clinician should know (2013) United States: Centers for Disease Control and Prevention (CDC)

Download references

Acknowledgments

The author would like to thank BP healthcare for providing the sputum samples.

Funding

This research was supported by NanoMalaysia Berhad, a CLG under the Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Malaysia (Project No. P17014), Malaysia Research University Network (MRUN) (UPM/800-4/11/MRUN/2018/5539230), and Putra Grant-Putra Graduate Initiative (GP-IPS) under Universiti Putra Malaysia (9528600).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Umi Zulaikha Mohd Azmi or Nor Azah Yusof.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Human ethics

KKM.NIHSEC. P18-2087 (6)

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Azmi, U.Z., Yusof, N.A., Abdullah, J. et al. Portable electrochemical immunosensor for detection of Mycobacterium tuberculosis secreted protein CFP10-ESAT6 in clinical sputum samples. Microchim Acta 188, 20 (2021). https://doi.org/10.1007/s00604-020-04669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04669-x

Keywords

Navigation