Skip to main content
Log in

Colorimetric sensing of chloride in sweat based on fluorescence wavelength shift via halide exchange of CsPbBr3 perovskite nanocrystals

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Considering the high importance of the rapid detection of chloride ion (Cl) in sweat for the diagnosis of fibrotic cysts, we have investigated the heterogeneous halide exchange between CsPbBr3 perovskite nanocrystals (PNCs) in n-hexane and Cl in aqueous solution. The results show that CsPbBr3 PNCs could achieve fast halide exchange with Cl in the aqueous phase under magnetic stirring at pH = 1, accompanied by a significant wavelength blue shift and vivid fluorescence color changes from green to blue. Therefore, a fluorescence wavelength shift-based colorimetric sensing of Cl based on the halide exchange of CsPbBr3 PNCs has been developed to realize the rapid detection of Cl in sweat. Compared with the conventional fluorescence intensity-based method, this method is of high convenience since the whole procedure could be achieved within 5 min without any sample pretreatment (even no dilution), demonstrating promising application prospects.

Fluorescence wavelength-shift based colorimetric sensing of chloride in sweat via halide exchange of CsPbBr3 perovskite nanocrystals

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jungil Choi RG, Baker LB, Rogers JA (2018) Skin-interfaced systems for sweat collection and analytics. Sci Adv 4:eaar3921

    Article  PubMed  PubMed Central  Google Scholar 

  2. LeGrys VA, Yankaskas JR, Quittell LM, Marshall BC, Mogayzel PJ Jr (2007) Diagnostic sweat testing: the cystic fibrosis foundation guidelines. J Pediatr 151:85–89

    Article  PubMed  Google Scholar 

  3. Calderon-Santiago M, Priego-Capote F, Jurado-Gamez B, Luque de Castro MD (2014) Optimization study for metabolomics analysis of human sweat by liquid chromatography-tandem mass spectrometry in high resolution mode. J Chromatogr A 1333:70–78

    Article  CAS  PubMed  Google Scholar 

  4. Doorn J, Storteboom TT, Mulder AM, de Jong WH, Rottier BL, Kema IP (2015) Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis. Ann Clin Biochem 52:421–427

    Article  CAS  PubMed  Google Scholar 

  5. Bujes-Garrido J, Arcos-Martinez MJ (2016) Disposable sensor for electrochemical determination of chloride ions. Talanta 155:153–157

    Article  CAS  PubMed  Google Scholar 

  6. Choi DH, Kim JS, Cutting GR, Searson PC (2016) Wearable potentiometric chloride sweat sensor: the critical role of the salt bridge. Anal Chem 88:12241–12247

    Article  CAS  PubMed  Google Scholar 

  7. Bujes-Garrido J, Arcos-Martínez MJ (2017) Development of a wearable electrochemical sensor for voltammetric determination of chloride ions. Sensors Actuators B Chem 240:224–228

    Article  CAS  Google Scholar 

  8. Choi D-H, Li Y, Cutting GR, Searson PC (2017) A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sensors Actuators B Chem 250:673–678

    Article  CAS  Google Scholar 

  9. Bujes-Garrido J, Izquierdo-Bote D, Heras A, Colina A, Arcos-Martinez MJ (2018) Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Anal Chim Acta 1012:42–48

    Article  CAS  PubMed  Google Scholar 

  10. Cinti S, Fiore L, Massoud R, Cortese C, Moscone D, Palleschi G, Arduini F (2018) Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 179:186–192

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalo-Ruiz J, Mas R, de Haro C, Cabruja E, Camero R, Alonso-Lomillo MA, Munoz FJ (2009) Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens Bioelectron 24:1788–1791

    Article  CAS  PubMed  Google Scholar 

  12. Rahman MM, Khan SB, Gruner G, Al-Ghamdi MS, Daous MA, Asiri AM (2013) Chloride ion sensors based on low-dimensional α-MnO2–Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I–V technique. Electrochim Acta 103:143–150

    Article  CAS  Google Scholar 

  13. Toh HS, Batchelor-McAuley C, Tschulik K, Compton RG (2013) Electrochemical detection of chloride levels in sweat using silver nanoparticles: a basis for the preliminary screening for cystic fibrosis. Analyst 138:4292–4297

    Article  CAS  PubMed  Google Scholar 

  14. Dam VAT, Zevenbergen MAG, van Schaijk R (2015) Flexible chloride sensor for sweat analysis. Procedia Engineering 120:237–240

    Article  CAS  Google Scholar 

  15. Mu X, Xin X, Fan C, Li X, Tian X, Xu KF, Zheng Z (2015) A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem Commun (Camb) 51:6365–6368

    Article  CAS  Google Scholar 

  16. De Matteis V, Cannavale A, Blasi L, Quarta A, Gigli G (2016) Chromogenic device for cystic fibrosis precocious diagnosis: a “point of care” tool for sweat test. Sensors Actuators B Chem 225:474–480

    Article  Google Scholar 

  17. Zhang C, Kim JP, Creer M, Yang J, Liu Z (2017) A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens Bioelectron 97:164–168

    Article  CAS  PubMed  Google Scholar 

  18. Qu F, Li NB, Luo HQ (2012) Polyethyleneimine-templated Ag nanoclusters: a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal Chem 84:10373–10379

    Article  CAS  PubMed  Google Scholar 

  19. Kuban P, Gregus M, Pokojova E, Skrickova J, Foret F (2014) Double opposite end injection capillary electrophoresis with contactless conductometric detection for simultaneous determination of chloride, sodium and potassium in cystic fibrosis diagnosis. J Chromatogr A 1358:293–298

    Article  CAS  PubMed  Google Scholar 

  20. Anja Graefe SES, Nietzsche S, Kubicova L, Beckert R, Biskup C, Mohr GJ (2008) Development and critical evaluation of fluorescent chloride nanosensors. Anal Chem 80:6526–6531

    Article  PubMed  Google Scholar 

  21. Kassal P, Steinberg MD, Horak E, Steinberg IM (2018) Wireless fluorimeter for mobile and low cost chemical sensing: a paper based chloride assay. Sensors Actuators B Chem 275:230–236

    Article  CAS  Google Scholar 

  22. Kim JP, Xie Z, Creer M, Liu Z, Yang J (2017) Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of cystic fibrosis. Chem Sci 8:550–558

    Article  CAS  PubMed  Google Scholar 

  23. Martin-Yerga D, Perez-Junquera A, Gonzalez-Garcia MB, Hernandez-Santos D, Fanjul-Bolado P (2018) In situ spectroelectrochemical monitoring of dye bleaching after electrogeneration of chlorine-based species: application to chloride detection. Anal Chem 90:7442–7449

    Article  CAS  PubMed  Google Scholar 

  24. Sekine Y, Kim SB, Zhang Y, Bandodkar AJ, Xu S, Choi J, Irie M, Ray TR, Kohli P, Kozai N, Sugita T, Wu Y, Lee K, Lee KT, Ghaffari R, Rogers JA (2018) A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip 18:2178–2186

    Article  CAS  PubMed  Google Scholar 

  25. Vallejos S, Hernando E, Trigo M, García FC, García-Valverde M, Iturbe D, Cabero MJ, Quesada R, García JM (2018) Polymeric chemosensor for the detection and quantification of chloride in human sweat. Application to the diagnosis of cystic fibrosis. J Mater Chem B 6:3735–3741

    Article  CAS  PubMed  Google Scholar 

  26. Xu X-Y, Yan B (2018) A fluorescent wearable platform for sweat Cl analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J Mater Chem C 6:1863–1869

    Article  CAS  Google Scholar 

  27. Riedinger A, Zhang F, Dommershausen F, Rocker C, Brandholt S, Nienhaus GU, Koert U, Parak WJ (2010) Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. Small 6:2590–2597

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Wu X, Chon C, Gonska T, Li D (2012) A novel device for quantitative measurement of chloride concentration by fluorescence indicator. Meas Sci Technol 23:025701

    Article  Google Scholar 

  29. Pullan NJ, Thurston V, Barber S (2013) Evaluation of an inductively coupled plasma mass spectrometry method for the analysis of sweat chloride and sodium for use in the diagnosis of cystic fibrosis. Ann Clin Biochem 50:267–270

    Article  CAS  PubMed  Google Scholar 

  30. Geddes CD (2001) Optical halide sensing using fluorescence quenching: theory, simulations and applications-a review. Meas Sci Technol 12:53–58

    Article  Google Scholar 

  31. Akkerman QA, D'Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137:10276–10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Q, Yin Y (2018) All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Cent Sci 4:668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y, Zeng H (2017) All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13:1603996

    Article  Google Scholar 

  34. Zhu Y, Li F, Huang Y, Lin F, Chen X (2019) Wavelength-shift-based colorimetric sensing for peroxide number of edible oil using CsPbBr3 perovskite nanocrystals. Anal Chem 91:14183–14187

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Hu H, Xia Z, Gao W, Gou W, Qu Y, Ma Y (2017) CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J Mater Chem C 5:309–313

    Article  CAS  Google Scholar 

  36. Chen C, Cai Q, Luo F, Dong N, Guo L, Qiu B, Lin Z (2019) Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots. Anal Chem 91:15915–15921

    Article  CAS  PubMed  Google Scholar 

  37. Huang G, Huang Y, Xu W, Yao Q, Liu X, Ding C, Chen X (2019) Cesium lead halide perovskite nanocrystals for ultraviolet and blue light blocking. Chin Chem Lett 30:1021–1023

    Article  CAS  Google Scholar 

  38. Xue J, Zhang Z, Zheng F, Xu Q, Xu J, Zou G, Li L, Zhu JJ (2017) Efficient solid-state electrochemiluminescence from high-quality perovskite quantum dot films. Anal Chem 89:8212–8216

    Article  CAS  PubMed  Google Scholar 

  39. Cai Z, Li F, Xu W, Xia S, Zeng J, He S, Chen X (2018) Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions. Nano Res 11:1447–1455

    Article  CAS  Google Scholar 

  40. Li F, Lin F, Huang Y, Cai Z, Qiu L, Zhu Y, Jiang Y, Wang Y, Chen X (2019) Bromobenzene aliphatic nucleophilic substitution guided controllable and reproducible synthesis of high quality cesium lead bromide perovskite nanocrystals. Inorganic Chemistry Frontiers 6:3577–3582

    Article  CAS  Google Scholar 

  41. Ushakova E, Cherevkov S, Sokolova A, Li Y, Azizov R, Baranov M, Kurdyukov D, Stovpiaga E, Golubev V, Rogach A, Baranov A (2020) Stable luminescent composite microspheres based on porous silica with embedded CsPbBr3 perovskite nanocrystals. ChemNanoMat 2020(6):1080–1085

    Article  Google Scholar 

  42. Legrys V, Yankaskas J, Quittell L, Marshall B, Mogayzel P (2007) Diagnostic sweat testing: the cystic fibrosis foundation guidelines

Download references

Acknowledgments

We gratefully acknowledge the financial supports by the National Natural Science Foundation of China (No. 21675133,22004055), the Shenzhen Science and Technology Project (No. JCYJ20180306172823786), and the Training Program of the Outstanding Young Scientific Talents in Fujian (2018-47), Natural Science Foundation of Fujian Province of China (2020J05165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 169 kb)

ESM 2

(MP4 1805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Feng, Y., Huang, Y. et al. Colorimetric sensing of chloride in sweat based on fluorescence wavelength shift via halide exchange of CsPbBr3 perovskite nanocrystals. Microchim Acta 188, 2 (2021). https://doi.org/10.1007/s00604-020-04653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04653-5

Keywords

Navigation