Skip to main content
Log in

Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor is described for highly sensitive and selective determination of anticancer drug irinitecan (IRT). Gold nanoparticles anchored graphitized carbon nanofibers (Au@GCNFs) was prepared. Au@GCNFs was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray. The combination of high catalytic activity of the nanocomposite Au@GCNFs and the good conductivity ionic liquid [BMIM]PF6 (IL) resulted in a modified paste electrode (IL/Au@GCNFs-PE). The IL/Au@GCNFs-PE exhibits excellent electrocatalytic activity for selective determination of IRT in the presence of physiological electroactive species, such as ascorbic acid (AA), dopamine (DA), uric acid (UA), and caffeine (CAF) mixture, typically at working potential of 0.88 V vs. Ag/AgCl. The linear response ranges 4.0 nM–1.79 μM and 4.5 nM–1.57 μM with limits of detection of 1.55 nM and 1.70 nM were calculated for IRT in the absence and presence of the quaternary mixture, respectively. The sensor is reproducible and stable over four weeks, and interference by biologically essential compounds is negligible. The method was applied to the determination of IRT in pharmaceutical formulations, in spiked blood serum and urine, and in clinical patient blood. The recovery values ranged from 96.0 to 104.2%.

Graphical abstract

The combination of high catalytic activity of the new nanocomposite AuNPs@GCNFs with the good conductivity ionic liquid (IL) resulted to a modified paste electrode (IL/Au@GCNFs-PE). The novel sensor was successfully applied for the sensitive and selective detection of IRT in biological samples in the presence of quaternary ascorbic acid (AA), dopamine (DA), uric acid (UA), and caffeine (CAF) mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sukanya R, Sakthivel M, Chen SM, Chen TW (2018) A new type of terbium diselenide nano octagon integrated oxidized carbon nanofiber: an efficient electrode material for electrochemical detection of morin in the food sample. Sensors Actuators B 269:354–367

    Article  CAS  Google Scholar 

  2. Huang J, Liu Y, You T (2010) Carbon nanofiber based electrochemical biosensors: a review. Anal Methods 2:202–211

    Article  Google Scholar 

  3. Mitchell RR, Gallant BM, Thompsona CV, Horn CV (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4:2952–2958

    Article  CAS  Google Scholar 

  4. Tong Y, Li Z, Lu X, Yang L, Sun W, Nie G, Wang Z, Wang C (2013) Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers. Electrochim Acta 95:12–17

    Article  CAS  Google Scholar 

  5. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  6. Liu HT, He P, Li ZY, Sun CY, Shi LH, Liu Y, Zhu GY, Li JH (2005) An ionic iquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 7:1357–1363

    Article  CAS  Google Scholar 

  7. Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H (2016) Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369

  8. Mohammadi N, Najafi M, Adeh NB (2017) Highly defective mesoporous carbon-ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sensors Actuators B Chem 243:838–846

  9. Ping J, Ru S, Fan K, Wu J, Ying Y (2010) Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim Acta 171:117–123

    Article  CAS  Google Scholar 

  10. Weekes J, Lam AKY, Sebesan S, Ho YH (2009) Irinotecan therapy and molecular targets in colorectal cancer: a systemic review. World J Gastroenterol 15:3597–3602

    Article  CAS  Google Scholar 

  11. Glimelius B (2005) Benefit-risk assessment of irinotecan in advanced colorectal cancer. Drug Saf 28:417–433

    Article  CAS  Google Scholar 

  12. Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12:1585–1604

    Article  CAS  Google Scholar 

  13. Bobenicová M, Valko M, Brezová V, Dvoranová D (2014) UVA generated free radicals in irinotecan (CPT-11) in the presence of copper ions. J Photochem Photobiol A Chem 290:125–138

    Article  Google Scholar 

  14. (2015) British national formulary: BNF 69 (69 ed.). British Medical Association, p 624. ISBN 9780857111562

  15. Mohammadi A, Esmaeili F, Dinarvand R, Atyabi F, Walker RB (2010) Simultaneous determination of irinotecan hydrochloride and its related compounds by high performance liquid chromatography using ultraviolet detection. Asian J Chem 22:3966–3972

    CAS  Google Scholar 

  16. Baylatry MT, Joly AC, Pelage JP, Lefevre LB, Prugnaud JL, Laurent A, Fernandez C (2010) Simple liquid chromatography method for the quantification of irinotecan and SN38 in sheep plasma: application to in vivo pharmacokinetics after pulmonary artery chemoembolization using drug eluting beads. J Chromatogr B 878:738–742

    Article  CAS  Google Scholar 

  17. Caceres MIR, Meras I, Soto NEO, de Alb PLL, Martınez LL (2008) Spectrofluorimetric determination of irinotecan in the presence of oxidant agents and metal ions. Talanta 74:1484–1491

    Article  Google Scholar 

  18. Sharma S, Sharma MC (2016) Development and validation of spectrophotometric method and TLC densitometric determination of irinotecan HCl in pharmaceutical dosage forms. Arab J Chem 9:S1368–S1372

    Article  CAS  Google Scholar 

  19. Serrano LA, Yang Y, Salvati E, Stellacci F, Krol S, Guldin S (2018) pH-mediated molecular differentiation for fluorimetric quantification of chemotherapeutic drugs in human plasma. Chem Commun 54:1485–1488

    Article  CAS  Google Scholar 

  20. Temerk Y, Ibrahim M, Ibrahim H, Schuhmann W (2018) Comparative studies on the interaction of anticancer drug irinotecan with dsDNA and ssDNA. RSC Adv 8:25387–25395

    Article  CAS  Google Scholar 

  21. Norouzi P, Qomi M, Nemati A, Ganjali MR (2009) Determination of anticolon cancer drug, irinotecan by fast fourier transforms continuous cyclic voltammetry. Int J Electrochem Sci 4:1248–1261

    CAS  Google Scholar 

  22. Temerk YM, Ibrahim HSM (2013) Individual and simultaneous square wave voltammetric determination of the anticancer drugs emodin and irinotecan at renewable pencil graphite electrodes. J Braz Chem Soc 24:1669–1678

    CAS  Google Scholar 

  23. Karadas N, Sanli S, Akmese B, Topal BD, Can A, Ozkan SA (2013) Analytical application of polymethylene blue-multiwalled carbon nanotubes modified glassy carbon electrode on anticancer drug irinotecan and determination of its ionization constant value. Talanta 115:911–919

    Article  CAS  Google Scholar 

  24. Temerk YM, Ibrahim HSM, Schuhmann W (2016) Square wave cathodic adsorptive stripping voltammetric determination of the anticancer drugs flutamide and irinotecan in biological fluids using renewable pencil graphite electrodes. Electroanalysis 28:372–379

    Article  CAS  Google Scholar 

  25. Zotti G, Berlin A, Vercelli B (2017) Electrochemistry of conjugated planar anticancer molecules: irinotecan and sunitinib. Electrochim Acta 231:336–343

    Article  CAS  Google Scholar 

  26. Bonazza G, Tartaggia S, Toffoli G, Polo F, Daniele S (2018) Voltammetric behaviour of the anticancer drug irinotecan and its metabolites in acetonitrile. Implications for electrochemical therapeutic drug monitoring. Electrochim Acta 289:483–493

    Article  CAS  Google Scholar 

  27. Hatamluyi B, Eshaghi Z, Zahed FM, Darroudi M (2019) A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of irinotecan and 5-fluorouracil in biological samples. Sensors Actuators B Chem 286:540–549

    Article  CAS  Google Scholar 

  28. Jovanovic IN, Lovric SK, Vrdoljak AL, Popovic AR, Neuberg M (2018) Voltammetric characterisation of anticancer drug irinotecan. Electroanalysis 30:336–344

    Article  Google Scholar 

  29. Ibrahim H, Temerk Y (2016) Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J Electroanal Chem 780:176–186

    Article  CAS  Google Scholar 

  30. Ibrahim H, Temerk Y, Farhan N (2018) A novel sensor based on nanobiocomposite Au-In2O3-chitosan modified acetylene black paste electrode for sensitive detection of antimycotic ciclopirox olamine. Talanta 179:75–85

  31. Ibrahim H, Temerk Y (2016) A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual and simultaneous determination of xanthine and hypoxanthine. Sensors Actuators B Chem 232:125–137

    Article  CAS  Google Scholar 

  32. Klett J, Hardy R, Romine E, Wells C, Burchell T (2000) High-thermal conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon 38:953–973

    Article  CAS  Google Scholar 

  33. Punckt C, Pope MA, Liu YM, Aksay IA (2016) Structure-dependent electrochemistry of reduced graphene oxide monolayers. J Electrochem Soc 163:H491–H498

    Article  CAS  Google Scholar 

  34. Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B Chem 149:252–258

    Article  CAS  Google Scholar 

  35. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossieny Ibrahim or Yassien Temerk.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6300 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H., Temerk, Y. Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan. Microchim Acta 187, 579 (2020). https://doi.org/10.1007/s00604-020-04560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04560-9

Keywords

Navigation