Skip to main content

Advertisement

Log in

Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: electrochemical sensing tool for doxorubicin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate’s related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS. In contrast to other electrodes reported in the literature, a much-improved electrochemical efficiency is shown by FeV/SCNF composite modified electrodes. Amperometric technique has been employed at 0.25 V (vs. Ag/AgCl) for the sensitive detection of DOX within a wide range of 20 nM–542.5 μM and it possesses enhanced selectivity in presence of common interferents. The modified electrochemical sensors show high sensitivity of 46.041 μA μM−1 cm−2. The newly developed sensor could be used for the determination of doxorubicin in both blood serum and drug formulations with acceptable results, suggesting its feasibility for real-time applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Migrino RQ, Aggarwal D, Konorev E, Brahmbhatt T, Bright M, Kalyanaraman B (2008) Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol 34:208–214

    Article  PubMed  Google Scholar 

  2. Hu J, Wang R, Fan R, Huang Z, Liu Y, Guo G, Fu H (2020) Enhanced luminescence in Yb3+ doped core-shell upconversion nanoparticles for sensitive doxorubicin detection. J Lumin 217:116812

    Article  CAS  Google Scholar 

  3. Ehsani M, Soleymani J, Mohammadalizadeh P, Hasanzadeh M, Jouyban A, Khoubnasabjafari M, Vaez-Gharamaleki Y (2021) Low potential detection of doxorubicin using a sensitive electrochemical sensor based on glassy carbon electrode modified with silver nanoparticles-supported poly (chitosan). Microchem J 165:106101

  4. Panikar SS, Banu N, Escobar E-R, García G-R, Cervantes-Martínez J, Villegas T-C, Salas P, De la Rosa E (2020) Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum. Talanta 218:121138

    Article  CAS  PubMed  Google Scholar 

  5. Lee C-S, Shim SJ, Kim TH (2020) Scalable preparation of low-defect graphene by urea-assisted liquid-phase shear exfoliation of graphite and its application in doxorubicin analysis. Nanomaterials 10:267

    Article  CAS  PubMed Central  Google Scholar 

  6. Siebel C, Lanvers-Kaminsky C, Würthwein G, Hempel G, Boos J (2020) Bioanalysis of doxorubicin aglycone metabolites in human plasma samples–implications for doxorubicin drug monitoring. Sci Rep 10:1–7

    Article  CAS  Google Scholar 

  7. Deepa S, Swamy BK, Pai KV (2020) A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: a voltammetric study. J Electroanal Chem 879:114748

    Article  CAS  Google Scholar 

  8. Rahmani F, Hosseini M-RM, Es-Haghi A, Mollahosseini A (2020) A 96-monolithic inorganic hollow fiber array as a new geometry for high throughput solid-phase microextraction of doxorubicin in water and human urine samples coupled with liquid chromatography–tandem mass spectrometry. J Chromatogr A 1627:461413

    Article  CAS  PubMed  Google Scholar 

  9. Harahap Y, Suryadi H, Anarta A (2020) Development and validation of doxorubicin hydrochloride and doxorubicinol quantification method in dried blood spot by liquid chromatography–tandem mass spectrometry. J Pharm Bioallied Sci 12:406–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Danielsson B (2007) Rapid high throughput assay for fluorimetric detection of doxorubicin—application of nucleic acid–dye bioprobe. Anal Chim Acta 587:47–51

    Article  CAS  PubMed  Google Scholar 

  11. Ghanbari MH, Norouzi Z (2020) A new nanostructure consisting of nitrogen-doped carbon nanoonions for an electrochemical sensor to the determination of doxorubicin. Microchem J 157:105098

    Article  CAS  Google Scholar 

  12. Selvi SV, Prasannan A, Chen S-M, Vadivelmurugan A, Tsai H-C, Lai J-Y (2021) Glutathione and cystamine functionalized MoS2 core-shell nanoparticles for enhanced electrochemical detection of doxorubicin. Microchim Acta 188:1–12

    Article  CAS  Google Scholar 

  13. Elumalai S, Mani V, Jeromiyas N, Ponnusamy VK, Yoshimura M (2020) A composite film prepared from titanium carbide Ti3C2Tx and gold nanoparticles for voltammetric determination of uric acid and folic acid. Microchim Acta 187:1–10

    Article  CAS  Google Scholar 

  14. Mani V, Selvaraj S, Jeromiyas N, Huang S-T, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C, Salama KN (2020) Growth of large-scale MoS2 nanosheets on double layered ZnCo2O4 for real-time in situ H2S monitoring in live cells. J Mater Chem B 8:7453–7465

    Article  CAS  PubMed  Google Scholar 

  15. Arasi SE, Devendran P, Ranjithkumar R, Arunpandiyan S, Arivarasan A (2020) Electrochemical property analysis of zinc vanadate nanostructure for efficient supercapacitors. Mater Sci Semicond Process 106:104785

    Article  CAS  Google Scholar 

  16. Suganya B, Chandrasekaran J, Maruthamuthu S, Saravanakumar B, Vijayakumar E (2020) Hydrothermally synthesized zinc vanadate rods for electrochemical supercapacitance analysis in various aqueous electrolytes. J Inorg Organomet Polym Mater 30:4510–4519

    Article  CAS  Google Scholar 

  17. Sankar SS, Karthick K, Sangeetha K, Gill RS, Kundu S (2020) Annexation of nickel vanadate (Ni3V2O8) nanocubes on nanofibers: an excellent electrocatalyst for water oxidation. ACS Sustain Chem Eng 8:4572–4579

    Article  CAS  Google Scholar 

  18. Chowdhury A, Shukla R, Sharma V, Neogy S, Chandra A, Grover V, Tyagi A (2020) Controlling reaction kinetics of layered zinc vanadate having brucite-like Zn–O layers supported by pyrovanadate pillars for use in supercapacitors. J Alloys Compd 829:154479

    Article  CAS  Google Scholar 

  19. Rajkumar S, Elanthamilan E, Merlin JP (2021) Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J Alloys Compd 861:157939

    Article  CAS  Google Scholar 

  20. Saravanakumar B, Karthikeyan N, Periasamy P, Britten AJ, Mkandawire M (2020) Polyethylene glycol mediated synthesis of iron vanadate (FeVO4) nanoparticles with supercapacitive features. Mater Res Express 7:064010

    Article  CAS  Google Scholar 

  21. Lakkepally S, Kalegowda Y, Ganganagappa N, Siddaramanna A (2018) A new and effective approach for Fe2V4O13 nanoparticles synthesis: evaluation of electrochemical performance as cathode for lithium secondary batteries. J Alloys Compd 737:665–671

    Article  CAS  Google Scholar 

  22. Zhang L, Jin Z, Ma X, Zhang Y, Wang H (2019) Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production. New J Chem 43:3609–3618

    Article  CAS  Google Scholar 

  23. Kabbani MA, Tiwary CS, Autreto PA, Brunetto G, Som A, Krishnadas K, Ozden S, Hackenberg KP, Gong Y, Galvao DS (2015) Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes. Nat Commun 6:1–8

    Article  CAS  Google Scholar 

  24. Dilgin DG, Karakaya S (2016) Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater Sci Eng C 63:570–576

    Article  CAS  Google Scholar 

  25. Karakaya S, Kaya İ (2021) An electrochemical detection platform for selective and sensitive voltammetric determination of quercetin dosage in a food supplement by poly (9-(2-(pyren-1-yl) ethyl)-9h-carbazole) coated indium tin oxide electrode. Polymer 212:123300

    Article  CAS  Google Scholar 

  26. Karakaya S, Kartal B, Dilgin Y (2020) Ultrasensitive voltammetric detection of an antimalarial drug (amodiaquine) at a disposable and low cost electrode. Monatshefte für Chemie-Chemical Monthly 151:1019–1026

    Article  CAS  Google Scholar 

  27. Karakaya S, Dilgin DG (2019) Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Monatshefte für Chemie-Chemical Monthly 150:1003–1010

    Article  CAS  Google Scholar 

  28. Srikrishnarka P, Kumar V, Ahuja T, Subramanian V, Selvam AK, Bose P, Jenifer SK, Mahendranath A, Ganayee MA, Nagarajan R (2020) Enhanced capture of particulate matter by molecularly charged electrospun nanofibers. ACS Sustain Chem Eng 8:7762–7773

    Article  CAS  Google Scholar 

  29. Jeromiyas N, Mani V, Chang P-C, Huang C-H, Salama KN, Huang S-T (2021) Anti-poisoning electrode for real-time in-situ monitoring of hydrogen sulfide release. Sensors Actuators B Chem 326:128844

    Article  CAS  Google Scholar 

  30. Zhao Y, Yao K, Cai Q, Shi Z, Sheng M, Lin H, Shao M (2014) Hydrothermal route to metastable phase FeVO 4 ultrathin nanosheets with exposed {010} facets: synthesis, photocatalysis and gas-sensing. CrystEngComm 16:270–276

    Article  CAS  Google Scholar 

  31. Li J, Zhao W, Guo Y, Wei Z, Han M, He H, Yang S, Sun C (2015) Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl Surf Sci 351:270–279

    Article  CAS  Google Scholar 

  32. Balamurugan M, Yun G, Ahn K-S, Kang SH (2017) Revealing the beneficial effects of FeVO4 nanoshell layer on the BiVO4 inverse opal core layer for photoelectrochemical water oxidation. J Phys Chem C 121:7625–7634

    Article  CAS  Google Scholar 

  33. Eshaq G, Wang S, Sun H, Sillanpaa M (2020) Superior performance of FeVO4@ CeO2 uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. J Hazard Mater 382:121059

    Article  CAS  PubMed  Google Scholar 

  34. Rajaji U, Chinnapaiyan S, Chen S.-M, Govindasamy M, J.I.d. Oliveira Filho, Khushaim W, Mani V (2021) Design and fabrication of yttrium ferrite garnet-embedded graphitic carbon nitride: a sensitive electrocatalyst for smartphone-enabled point-of-care pesticide (mesotrione) analysis in food samples. ACS Appl Mater Interfaces 13: 24865−24876

  35. Wang W, Zhang Y, Huang X, Bi Y (2019) Engineering the surface atomic structure of FeVO 4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution. J Mater Chem A 7:10949–10953

    Article  CAS  Google Scholar 

  36. Rajaji U, Chinnapaiyan S, Chen T-W, Chen S-M, Mani G, Mani V, Ali MA, Al-Hemaid FM, El-Shikh MS (2021) Rational construction of novel strontium hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim Acta 371:137756

    Article  CAS  Google Scholar 

  37. Long X, Gao L, Li F, Hu Y, Wei S, Wang C, Wang T, Jin J, Ma J (2019) Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl Catal B Environ 257:117813

    Article  CAS  Google Scholar 

  38. Arul P, Huang S-T, Gowthaman N, Mani G, Jeromiyas N, Shankar S, John SA (2021) Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A. Anal Chim Acta 1150:338228

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Yuan L, Hao Z, Liu X, Xiang J, Zhang Z, Huang Y, Xie J (2018) Free-standing Mn3O4@ CNF/S paper cathodes with high sulfur loading for lithium–sulfur batteries. ACS Appl Mater Interfaces 10:13406–13412

    Article  CAS  PubMed  Google Scholar 

  40. Liu T, Guo Y-F, Yan Y-M, Wang F, Deng C, Rooney D, Sun K-N (2016) CoO nanoparticles embedded in three-dimensional nitrogen/sulfur co-doped carbon nanofiber networks as a bifunctional catalyst for oxygen reduction/evolution reactions. Carbon 106:84–92

    Article  CAS  Google Scholar 

  41. Vilian AE, Mani V, Chen S-M, Dinesh B, Huang S-T (2014) The immobilization of glucose oxidase at manganese dioxide particles-decorated reduced graphene oxide sheets for the fabrication of a glucose biosensor. Ind Eng Chem Res 53:15582–15589

    Article  CAS  Google Scholar 

  42. Akilarasan M, Kogularasu S, Chen SM, Govindasamy M, Chen TW, Ali MA, Al-Hemaid FM, Elshikh M, Farah MA (2018) A green approach to the synthesis of well-structured Prussian blue cubes for the effective electrocatalytic reduction of antiprotozoal agent coccidiostat nicarbazin. Electroanalysis 30:1669–1677

    Article  CAS  Google Scholar 

  43. Rajaji U, Selvi SV, Chen S-M, Chinnapaiyan S, Chen T-W, Govindasamy M (2020) A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2′-deoxyguanosine. Microchim Acta 187:1–10

    Article  CAS  Google Scholar 

  44. Govindasamy M, Wang S-F, Almahri A, Rajaji U (2021) Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrason Sonochem 72:105445

    Article  CAS  PubMed  Google Scholar 

  45. Rahimi M, Gh AB, Fatemi SJ (2019) A new sensor consisting of bird nest-like nanostructured nickel cobaltite as the sensing element for electrochemical determination of doxorubicin. J Electroanal Chem 848:113333

    Article  CAS  Google Scholar 

  46. Rajaji U, Ganesh P.-S, Chen S.-M, Govindasamy M, Kim S-Y, Chang F.-M, Shimoga G, Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: High-sensitive amperometric platform for sensing of glucose in biological fluids. J Ind Eng Chem 102:312-332

  47. Ragu SM, Shen-Ming G, Chen Y, Palraj C-L, Syang-Peng R, Rwei (2017) Electrochemical determination of morin in Kiwi and Strawberry fruit samples using vanadium pentoxide nano-flakes. J Colloid Interface Sci 504626–632. https://doi.org/10.1016/j.jcis.2017.03.039

  48. Umamaheswari RT-W, Sathishkumar C, Shen-Ming C, Mani C, Govindasamy (2020) Two-dimensional binary nanosheets (Bi2Te3@g-C3N4): Application toward the electrochemical detection of food toxic chemical. Anal Chim Acta 1125220–230. https://doi.org/10.1016/j.aca.2020.05.033

  49. Haghshenas E, Madrakian T, Afkhami A (2016) Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples. Anal Bioanal Chem 408:2577–2586

    Article  CAS  PubMed  Google Scholar 

  50. Hahn Y, Lee HY (2004) Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch Pharm Res 27:31–34

    Article  CAS  PubMed  Google Scholar 

  51. Ghanbari MH, Shahdost-Fard F, Salehzadeh H, Ganjali MR, Iman M, Rahimi-Nasrabadi M, Ahmadi F (2019) A nanocomposite prepared from reduced graphene oxide, gold nanoparticles and poly (2-amino-5-mercapto-1, 3, 4-thiadiazole) for use in an electrochemical sensor for doxorubicin. Microchim Acta 186:641

    Article  CAS  Google Scholar 

  52. Chekin F, Myshin V, Ye R, Melinte S, Singh SK, Kurungot S, Boukherroub R, Szunerits S (2019) Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma. Anal Bioanal Chem 411:1509–1516

    Article  CAS  PubMed  Google Scholar 

  53. Fouladgar M (2018) CuO-CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs. J Electrochem Soc 165:B559–B564

    Article  CAS  Google Scholar 

  54. Soleymani J, Hasanzadeh M, Eskandani M, Khoubnasabjafari M, Shadjou N, Jouyban A (2017) Electrochemical sensing of doxorubicin in unprocessed whole blood, cell lysate, and human plasma samples using thin film of poly-arginine modified glassy carbon electrode. Mater Sci Eng C 77:790–802

    Article  CAS  Google Scholar 

  55. Guo Y, Chen Y, Zhao Q, Shuang S, Dong C (2011) Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 23:2400–2407

    Article  CAS  Google Scholar 

  56. Materon EM, Wong A, Fatibello-Filho O, Faria RC (2018) Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J Electroanal Chem 827:64–72

    Article  CAS  Google Scholar 

  57. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Mol Liq 221:354–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah Bbint Abdulrahman University through the Fast-track Research Funding Program.

Funding

This work was supported by the National Taipei University of Technology and MOST 107-2113-M-027-005 MY3, Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3.52 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaji, U., K, Y.K., Chen, SM. et al. Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: electrochemical sensing tool for doxorubicin. Microchim Acta 188, 303 (2021). https://doi.org/10.1007/s00604-021-04950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04950-7

Keywords

Navigation