Skip to main content
Log in

In situ formed zinc oxide/graphitic carbon nitride nanohybrid for the electrochemical determination of 4-nitrophenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical determination of 4-nitrophenol using a nanohybrid consisting of glassy carbon (GC) and zinc oxide/graphitic carbon nitride (ZnO/g-CN nanosheet), is described. The ZnO/g-CN nanohybrid was in situ synthesized by chemical method and well characterized using absorption spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopic analysis. It was observed that the nanosized ZnO particles were present inside the sheet-like g-CN nanostructure. The nanohybrid-modified electrode showed an enhanced electrocatalytic response for 4-nitrophenol reduction compared with the bare GC electrode. The assay exhibited linear ranges of 13.4–100 μM and 100–1000 μM for 4-NP determination. The limit of detection and limit of quantification were 4.0 and 13.4 μM, respectively, at the working potential of − 0.85 V. An appreciable precision was found towards the stability of the assay in the determination. It provides selectivity against inorganic and organic substances such as calcium chloride, potassium chloride, nitrobenzene, uric acid, 1-chloro,2,4-dinitrobenzene, 1-bromo,2-nitrobenzene and 1-iodo,2-nitrobenzene. The practical applicability of the assay was also checked in the analysis of real water samples and satisfactory recovery of 4-NP was found.

Schematic representation of the synthesis of zinc oxide (ZnO) nanostructures incorporated graphitic carbon nitride nanosheets (g-C3N4 NSs) and its application in the voltammetric determination of 4-nitrophenol (4-NP) is presented. The nanohybrid assay showed selectivity among coexisting compounds and good recovery in real sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ju K-S, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272. https://doi.org/10.1128/mmbr.00006-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmad K, Mohammad A, Mathur P, Mobin SM (2016) Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta 215:435–446. https://doi.org/10.1016/j.electacta.2016.08.123

    Article  CAS  Google Scholar 

  3. Spitzer D, Cottineau T, Piazzon N, Josset S, Schnell F, Pronkin SN, Savinova ER, Keller V (2012) Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives. Angew Chem Int Ed 51:5334–5338. https://doi.org/10.1002/anie.201108251

    Article  CAS  Google Scholar 

  4. Chen N, Ding P, Shi Y, Jin T, Su Y, Wang H, He Y (2017) Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal Chem 89:5072–5078. https://doi.org/10.1021/acs.analchem.7b00521

    Article  CAS  PubMed  Google Scholar 

  5. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P, Chen D (2019) Facile and ultrasensitive determination of 4-nitrophenol based on acetylene black paste and graphene hybrid electrode. Nanomaterials 9:1–16. https://doi.org/10.3390/nano9030429

    Article  CAS  Google Scholar 

  6. Madhu R, Karuppiah C, Chen SM, Veerakumar P, Liu SB (2014) Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons. Anal Methods 6:5274–5280. https://doi.org/10.1039/c4ay00795f

    Article  CAS  Google Scholar 

  7. Liu Z, Du J, Qiu C et al (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365–1368. https://doi.org/10.1016/j.elecom.2009.05.004

    Article  CAS  Google Scholar 

  8. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201–202:250–259. https://doi.org/10.1016/j.jhazmat.2011.11.076

    Article  CAS  PubMed  Google Scholar 

  9. Mohammad A, Ahmad K, Qureshi A, Tauqeer M, Mobin SM (2018) Zinc oxide-graphitic carbon nitride nanohybrid as an efficient electrochemical sensor and photocatalyst. Sensors Actuators B Chem 277:467–476. https://doi.org/10.1016/j.snb.2018.07.086

    Article  CAS  Google Scholar 

  10. Tang Y, Huang R, Liu C, Yang S, Lu Z, Luo S (2013) Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. Anal Methods 5:5508–5514. https://doi.org/10.1039/c3ay40742j

    Article  CAS  Google Scholar 

  11. Xu Y, Lei W, Su J, Hu J, Yu X, Zhou T, Yang Y, Mandler D, Hao Q (2018) A high-performance electrochemical sensor based on g-C3N4-E-PEDOT for the determination of acetaminophen. Electrochim Acta 259:994–1003. https://doi.org/10.1016/j.electacta.2017.11.034

    Article  CAS  Google Scholar 

  12. Veerakumar P, Rajkumar C, Chen SM, Thirumalraj B, Lin KC (2018) Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. J Electroanal Chem 826:207–216. https://doi.org/10.1016/j.jelechem.2018.08.031

    Article  CAS  Google Scholar 

  13. Hassannezhad M, Hosseini M, Ganjali MR, Arvand M (2019) A graphitic carbon nitride (g-C3N4/Fe3O4) nanocomposite: an efficient electrode material for the electrochemical determination of tramadol in human biological fluids. Anal Methods 11:2064–2071. https://doi.org/10.1039/c9ay00146h

    Article  CAS  Google Scholar 

  14. Zhou J, Zhang M, Zhu Y (2014) Preparation of visible light-driven g-C3N4@ZnO hybrid photocatalyst via mechanochemistry. Phys Chem Chem Phys 16:17627–17633. https://doi.org/10.1039/c4cp02061h

    Article  CAS  PubMed  Google Scholar 

  15. Luo Y, Yan Y, Zheng S, Xue H, Pang H (2019) Graphitic carbon nitride based materials for electrochemical energy storage. J Mater Chem A 7:901–924. https://doi.org/10.1039/c8ta08464e

    Article  CAS  Google Scholar 

  16. Hasegawa G, Aoki M, Kanamori K, Nakanishi K, Hanada T, Tadanaga K (2011) Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area. J Mater Chem 21:2060–2063. https://doi.org/10.1039/c0jm03793a

    Article  CAS  Google Scholar 

  17. Izyumskaya N, Tahira A, Ibupoto ZH, Lewinski N, Avrutin V, Özgür Ü, Topsakal E, Willander M, Morkoç H (2017) Review - electrochemical biosensors based on ZnO nanostructures. ECS J Solid State Sci Technol 6:Q84–Q100. https://doi.org/10.1149/2.0291708jss

    Article  CAS  Google Scholar 

  18. Sun JX, Yuan YP, Qiu LG, Jiang X, Xie AJ, Shen YH, Zhu JF (2012) Fabrication of composite photocatalyst g-C3N 4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans 41:6756–6763. https://doi.org/10.1039/c2dt12474b

    Article  CAS  PubMed  Google Scholar 

  19. Sett A, Das D, Banerjee D, Ghorai UK, Das NS, Das B, Chattopadhyay KK (2018) 1D-2D hybrids as efficient optoelectronic materials: a study on graphitic carbon nitride nanosheets wrapped with zinc oxide rods. Dalton Trans 47:4501–4507. https://doi.org/10.1039/c8dt00016f

    Article  CAS  PubMed  Google Scholar 

  20. Yuan X, Zhou C, Jing Q et al (2016) Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium(VI) under visible light. Nanomaterials 6. https://doi.org/10.3390/nano6090173

  21. Patnaik S, Swain G, Parida KM (2018) Highly efficient charge transfer through a double Z-scheme mechanism by a Cu-promoted MoO3/g-C3N4 hybrid nanocomposite with superior electrochemical and photocatalytic performance. Nanoscale 10:5950–5964. https://doi.org/10.1039/c7nr09049h

    Article  CAS  PubMed  Google Scholar 

  22. Vinoth S, Sampathkumar P, Giribabu K, Pandikumar A (2019) Ultrasonically assisted synthesis of barium stannate incorporated graphitic carbon nitride nanocomposite and its analytical performance in electrochemical sensing of 4-nitrophenol. Ultrason Sonochem:104855. https://doi.org/10.1016/j.ultsonch.2019.104855

  23. Qiao F, Wang J, Ai S, Li L (2015) As a new peroxidase mimetics: the synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensors Actuators B Chem 216:418–427. https://doi.org/10.1016/j.snb.2015.04.074

    Article  CAS  Google Scholar 

  24. Shifu C, Wei Z, Sujuan Z, Wei L (2009) Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem Eng J 148:263–269. https://doi.org/10.1016/j.cej.2008.08.039

    Article  CAS  Google Scholar 

  25. Rajkumar C, Veerakumar P, Chen SM, Thirumalraj B, Lin KC (2018) Ultrathin sulfur-doped graphitic carbon nitride Nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol. ACS Sustain Chem Eng 6:16021–16031. https://doi.org/10.1021/acssuschemeng.8b02041

    Article  CAS  Google Scholar 

  26. Alam MK, Rahman MM, Abbas M, Torati SR, Asiri AM, Kim D, Kim CG (2017) Ultra-sensitive 2-nitrophenol detection based on reduced graphene oxide/ZnO nanocomposites. J Electroanal Chem 788:66–73. https://doi.org/10.1016/j.jelechem.2017.02.004

    Article  CAS  Google Scholar 

  27. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185. https://doi.org/10.1007/s00604-018-2840-4

  28. Yadav DK, Ganesan V, Sonkar PK, Gupta R, Rastogi PK (2016) Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim Acta 200:276–282. https://doi.org/10.1016/j.electacta.2016.03.092

    Article  CAS  Google Scholar 

  29. Mei M, Huang X, Yu J, Yuan D (2015) Sensitive monitoring of trace nitrophenols in water samples using multiple monolithic fiber solid phase microextraction and liquid chromatographic analysis. Talanta 134:89–97. https://doi.org/10.1016/j.talanta.2014.10.059

    Article  CAS  PubMed  Google Scholar 

  30. Lamba R, Umar A, Mehta SK, Kumar Kansal S (2015) Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta 131:490–498. https://doi.org/10.1016/j.talanta.2014.07.096

    Article  CAS  PubMed  Google Scholar 

  31. Santhoshkumar A, Kavitha HP, Suresh R, Venila JP, Praveen Kumar S, Narayanan V (2017) ZnO nanoparticles: hydrothermal synthesis and 4-nitrophenol sensing property. J Mater Sci Mater Electron 28:9272–9278. https://doi.org/10.1007/s10854-017-6663-6

    Article  CAS  Google Scholar 

  32. Bashami RM, Hameed A, Aslam M, Ismail IMI, Soomro MT (2015) The suitability of ZnO film-coated glassy carbon electrode for the sensitive detection of 4-nitrophenol in aqueous medium. Anal Methods 7:1794–1801. https://doi.org/10.1039/c4ay02857k

    Article  CAS  Google Scholar 

  33. Ikhsan NI, Rameshkumar P, Huang NM (2016) Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol. Electrochim Acta 192:392–399. https://doi.org/10.1016/j.electacta.2016.02.005

    Article  CAS  Google Scholar 

  34. Arvinte A, Mahosenaho M, Pinteala M, Sesay AM, Virtanen V (2011) Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim Acta 174:337–343. https://doi.org/10.1007/s00604-011-0628-x

    Article  CAS  Google Scholar 

  35. Wang P, Xiao J, Guo M, Xia Y, Li Z, Jiang X, Huang W (2015) Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode. J Electrochem Soc 162:H72–H78. https://doi.org/10.1149/2.0991501jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

APK thanks SERB-DST for financial support through the Early Career Research (ECRA) Award (SERB File No.: ECR/2017/001758). The authors thank CIF, CSIR-CECRI for the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Perumal Rameshkumar or Alagarsamy Pandikumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2586 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsa, K., Rajaitha, P.S.M., Vinoth, S. et al. In situ formed zinc oxide/graphitic carbon nitride nanohybrid for the electrochemical determination of 4-nitrophenol. Microchim Acta 187, 552 (2020). https://doi.org/10.1007/s00604-020-04525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04525-y

Keywords

Navigation